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DDcGAN: A Dual-Discriminator Conditional
Generative Adversarial Network for

Multi-Resolution Image Fusion
Jiayi Ma , Han Xu , Junjun Jiang , Xiaoguang Mei , and Xiao-Ping Zhang , Senior Member, IEEE

Abstract— In this paper, we proposed a new end-to-end model,
termed as dual-discriminator conditional generative adversarial
network (DDcGAN), for fusing infrared and visible images of
different resolutions. Our method establishes an adversarial game
between a generator and two discriminators. The generator
aims to generate a real-like fused image based on a specifically
designed content loss to fool the two discriminators, while the
two discriminators aim to distinguish the structure differences
between the fused image and two source images, respectively,
in addition to the content loss. Consequently, the fused image
is forced to simultaneously keep the thermal radiation in the
infrared image and the texture details in the visible image. More-
over, to fuse source images of different resolutions, e.g., a low-
resolution infrared image and a high-resolution visible image,
our DDcGAN constrains the downsampled fused image to have
similar property with the infrared image. This can avoid causing
thermal radiation information blurring or visible texture detail
loss, which typically happens in traditional methods. In addition,
we also apply our DDcGAN to fusing multi-modality medical
images of different resolutions, e.g., a low-resolution positron
emission tomography image and a high-resolution magnetic
resonance image. The qualitative and quantitative experiments
on publicly available datasets demonstrate the superiority of
our DDcGAN over the state-of-the-art, in terms of both visual
effect and quantitative metrics. Our code is publicly available at
https://github.com/jiayi-ma/DDcGAN.

Index Terms— Image fusion, generative adversarial network,
infrared image, medical image, different resolutions.

I. INTRODUCTION

INFRARED and visible image fusion has been gaining in
popularity in image signal processing due to its extensive

applications in many fields such as computer vision, remote
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sensing, medical imaging, and military detection [1], [2].
Among these sensors, infrared and visible sensors are prob-
ably the most widely used type of sensors with wavelengths
of 8-14 μm [3] and 300-530 nm [4] respectively. The unique-
ness of the combining infrared and visible sensors lies in the
fact that visible sensors capture reflected light to represent
abundant texture details whereas infrared sensors map captured
thermal radiation to gray images and can highlight thermal
targets even in poor lighting conditions or under the circum-
stances of severe occlusion. Due to the strong complementarity
between them, the fused result has the potential to present
nearly all the inherent properties of the target to improve visual
understanding [5]. Therefore, their fusion plays an important
role in military and civilian applications [6], [7].

For multi-modality source images, the key of image fusion
is to extract the most important feature information in source
images taken from different imaging apparatus and merge it
into a single fused image [8]. Therefore, the fused image can
provide more complex and detailed scene representation while
reducing redundant information. For this purpose, many fusion
methods have been proposed in the past decades. According to
corresponding schemes, these fusion methods can be divided
into different categories, including multi-scale transform-based
methods [9], [10], sparse representation-based methods [11],
[12], neural network-based methods [13], subspace-based
methods [14], saliency-based methods [15], hybrid meth-
ods [16], and other fusion methods [17], [18]. These methods
are dedicated to design feature extraction and fusion rules in a
manual way for better fusion performance. However, detailed
and diverse feature extraction and fusion rule design make the
fusion method more and more complex.

Since much attention has been drawn to deep learning
recently, some deep learning-based fusion methods have been
proposed. The detailed exposition of deep learning-based
fusion methods will be discussed later in Sec. II-A. Although
these works have achieved promising performance, there are
still some drawbacks: (i) The deep learning framework is only
applied in some part of the fusion process, e.g., to extract
features, while the overall fusion process is still in traditional
frameworks [19], [20]. (ii) Faced with the lack of ground-truth,
the solutions by merely designing loss functions are incompre-
hensive and inappropriate. (iii) The fusion rules designed in
a manual way enforce the extraction of same features even if
source images are multi-modality data. (iv) In existing fusion
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methods based on traditional generative adversarial network
(GAN) [21], [22], the fused image is trained to be similar to
only one of the source images, leading to the loss of some
information contained in the other source image.

Furthermore, due to the limitations of hardware and
environments, the infrared images always suffer from low
resolution and blurred details compared with corresponding
visible images, and it is hard to improve the resolution of
infrared images by upgrading hardware devices. For fusing
multi-resolution infrared and visible images (e.g., images of
different resolutions), the strategy of downsampling visible
images or upsampling infrared images before fusion will
inevitably causes thermal radiation information blurring or vis-
ible texture detail loss. Therefore, it remains a challenging task
to fuse multi-resolution infrared and visible images without
loss of important information.

To address the above challenges, in this work, we propose
a fusion method via dual-discriminator conditional genera-
tive adversarial network (DDcGAN). The problem is for-
mulated as a particular adversarial process of two kinds of
neural networks, i.e., a generator and two discriminators,
based on conditional GAN [23]. We adapt the architecture
to dual-discriminators and the discriminators are pulling each
other on the distribution of the generated data obtained by
the generator, so that the fused image simultaneously keeps
the most important feature information in infrared and visible
images. We utilize source images as the real data and the
fused image should be indistinguishable with both types of real
images, and hence the ground-truth fused image is not required
in our model. The entire network is an end-to-end model
without the requirement of designing fusion rules. Moreover,
our model can be generalized to fuse source images of differ-
ent resolutions. In particular, we constrain the downsampled
fused image to have similar properties with the infrared image,
and utilize trainable deconvolution layers to learn a mapping
between different resolutions. Last but not least, our proposed
method can also be generalized to solve the medical image
fusion problem, e.g., positron emission tomography (PET) and
magnetic resonance image (MRI) fusion, which can preserve
the functional information and the anatomical information to a
great extent in the fused image. Extensive results have revealed
the advantages of our DDcGAN compared to other methods.

The major contributions of our work include the follow-
ing four aspects. Firstly, our proposed method has con-
tributed to applying a deep learning framework based on
minmax two-player game to the overall fusion process of
multi-modality images rather than just some sub parts of
them. Secondly, the dual-discriminators architecture enables
the generator to be more adequately trained to meet stricter
requirements and avoid information loss caused by the intro-
duction of discriminator on only one type of source images.
Thirdly, in virtue of the utilization of trainable deconvolution
layers and content constraints on downsampled fused images,
our proposed method demonstrates better performances for
multi-resolution source image fusion. Lastly, our method can
also be extended to the fusion of medical images such
as MRI and PET image fusion and achieves advantageous
performances.

A preliminary version of this manuscript has appeared
in [24]. The primary new contributions include the following
five aspects. First, the generator network architecture is opti-
mized, where we replace the U-net with the densely connected
convolutional network. In virtue of the dense connections,
the network architecture can strength the transmission of
feature maps and make use of them more effectively. Without
the loss caused by the large stride and the blur caused by the
upsampling operations, the information in source images is
preserved to a greater extent for clearer fusion performance.
Second, the input of the discriminator Dv is no longer the
gradients of image to be distinguished but the image itself.
By expanding the probability space from the subspace of
source images to the whole images, the fused images can
have more similar properties with source images. When the
network tries to minimize the divergence of different prob-
ability distributions in the subspace, it will introduce some
additional noise into the source images. By expanding the
probability space, the influence can be mitigated. Third, as for
the input of the generator, i.e., different-resolution source
images, instead of upsampling the low-resolution source image
with two upsamping layers, we employ a deconvolution layer
to learn a mapping from low to high resolution. The difference
is that the parameters in this layer are obtained during the
training phase rather than pre-defined. And the high-resolution
source image is fed into another deconvolution layer to
generate same-resolution feature maps. Fourth, we add more
detailed analysis experiments related to the generator and two
discriminators to verify the effects of their subparts. Last,
we apply the proposed method to fuse different-resolution
multi-modal medical images, i.e., low-resolution PET images
and high-resolution MRI images, and compare our fused
results with state-of-the-art methods qualitatively and quan-
titatively.

The remainder of this paper is organized as follows.
Section II describes some related work, including an overview
of existing deep learning-based fusion methods and a theoret-
ical introduction of GANs. Section III provides the problem
formulation, loss functions and network architecture design.
In Section IV, our proposed method is generalized to fuse
medical images. In Section V, we compare our method with
several state-of-the-art methods on publicly available datasets
by qualitative and quantitative comparisons both for infrared
and visible image fusion and PET and MRI image fusion.
The experiments of discriminator analysis are also conducted
in this section. Conclusions are given in Section VI.

II. RELATED WORK

In this section, we give a brief introduction of the existing
deep learning-based image fusion methods. In addition, since
our method is based on the GANs, we also provide a brief
explanation of its basic theory and an improved network,
namely conditional GAN.

A. Deep Learning-Based Fusion Methods

Since the study based on deep learning has become an active
topic in the field of image fusion in the last three years [25],
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many deep learning-based fusion methods have been proposed
and gradually formed a critical branch. In some methods,
the deep learning framework is applied to extract image
features in an end-to-end manner for reconstruction. Repre-
sentatively, Liu et al. [19] applied the convolutional sparse
representation (CSR) for image fusion, which is employed
to extract multi-layer features and these features are used to
generate the fused image. In [26], Liu et al. proposed a medical
image fusion method based on convolutional neural networks
(CNNs). The convolutional network is merely adopted to
generate a weight map which integrates the pixel activity
information and the overall fusion process is still conducted
in a multi-scale mannar via image pyramids in a traditional
way. In [20], Li et al. decomposed the source images into
base parts and detail content. The deep learning framework is
used to extract multi-layer features in the detail content while
the base parts are fused by weighted-averaging. Then, the two
parts are combined for reconstruction.

In other methods, the deep learning framework is used
not only for feature extraction but also for reconstruction.
For instance, based on a three-layer architecture for super-
resolution, Masi et al. [27] proposed a convolutional neural
network for projection, mapping, and reconstruction to solve
pansharpening problem. Prabhakar et al. [28] proposed an
unsupervised deep learning framework for multi-exposure
fusion. They utilized a novel CNN architecture and designed
a no-reference quality metric as the loss function. As weights
are tied, the pre-fusion layers are forced to learn the same
features and these features are added for fusion. On this
basis, Li et al. [29] improved the architecture by introducing
dense block. In the fusion layer, salient feature maps are
combined by two manually designed fusion strategies (addition
and �1-norm). Similarly, it utilizes no-reference metrics (the
structural similarity index measure and the Euclidean distance)
as the loss function for unsupervised learning. In our previous
work [21], we proposed the FusionGAN to fuse infrared
and visible images using a generative adversarial network.
The fused image generated by the generator is forced to
have more details existing in the visible image by applying
the discriminator to distinguish differences between them.
When fusing source images with different resolutions, the low-
resolution infrared images are simply interpolated before fed
into the generator.

Although the abovementioned works have achieved promis-
ing performance, there are still some drawbacks in existing
deep learning-based fusion methods. (i) Existing methods
typically perform neural network in feature extraction and
reconstruction while fusion rules are still designed in a manual
way. Thus, the entire method can not get rid of the limitations
of traditional fusion methods. (ii) The major stumbling block
in utilizing deep learning for infrared and visible image
fusion is the lack of ground-truth fused image for supervised
learning. Existing methods solve it by designing loss function
to penalize differences between output and target in some
aspects. However, these metrics will introduce new problems
while penalizing certain aspects. For instance, the Euclidean
distance suffers from relatively blurred results by averaging
all plausible outputs [30]. Therefore, it remains to be difficult

to design a comprehensive, appropriate and adaptive loss
function to specify a high-level goal. (iii) Most artificially
designed fusion rules lead to the extraction of same features
for different types of source images, regardless of the fact that
source images are manifestations of different phenomena and
it is inappropriate for multi-source image fusion. (iv) Existing
GAN-based fusion method merely applies GAN to force the
fused image to obtain more details in visible images while the
thermal radiation in infrared images is only obtained through
the content loss. As the adversarial game proceeds, the fused
image is more similar to the visible image and the prominence
of thermal targets is gradually reduced.

To address the problems, we solve the fusion problem by
applying GAN and adapt it with dual discriminators. On this
basis, we introduce the deconvolution layers to adapt to the
fusion of source images of different resolutions. In addition,
for the stability of the training process, we optimize the
network architecture and the training strategy.

B. Generative Adversarial Networks

Generative adversarial networks is one of the generative
models. If samples are drawn from the real distribution
Pdata (x), the generative model is designed to learn a prob-
ability distribution Pmodel (x; θ) parameterized by θ as an
estimation of Pdata (x) from samples {x1, x2, · · · , xm}, where
Pmodel (x; θ) are Gaussian mixture models. Likelihood of
generating the samples is defined as follows:

L =
m∏

i=1

Pmodel

(
xi ; θ

)
. (1)

Then we can perform maximum likelihood estimation [31]:

θ∗ = arg max
θ

m∑
i=1

logPmodel

(
xi ; θ

)
. (2)

It can be thought of as minimizing the Kullback-Liebler
divergence between Pdata (x) and Pmodel (x; θ). However, if
Pmodel is a much more complicated probability distribution,
it will be quite difficult to calculate its likelihood function
to perform maximum likelihood estimation. To deal with it,
GANs estimate generative models via an adversarial process
by simultaneously training two models: a generative model G
and a discriminator model D [32].

The generator G is a network that can capture the data
distribution and generate new samples. If we input the noise
z sampled from the latent space, it generates a sample x =
G (z). In virtue of neural networks, the probability distribution
PG (x) formed by generated samples has the ability to be much
more complicated. The training objective of G is to make
PG (x) and Pdata (x) as close as possible and the optimization
formulation can be defined as:

G∗ = arg min
G

Div (PG (x) , Pdata (x)) , (3)

where Div(·) denotes the divergence between two distrib-
utions. However, it is difficult to calculate the divergence
because the formulations of PG and Pdata are unknown.
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Fig. 1. The entire procedure of our DDcGAN for image fusion.

Ingeniously, the discriminator D can be used to solve this
problem for it estimates the probability that a sample comes
from the training data rather than G. The objective function
for D can be formulated as:

D∗ = arg max
D

V (G, D) , (4)

where V (G, D) is defined as follows:
V (G, D) = Ex∼Pdata

[
logD (x)

] + Ex∼PG

[
log (1 − D (x))

]
.

(5)

A large objective value means that the Jensen-Shannon (JS)
divergence of PG and Pdata is large and they are easy to
discriminate. Thus, the optimization formulation of G can be
converted to:

G∗ = arg min
G

max
D

V (G, D) , (6)

where the discriminator D is fixed when we are training G.
The adversarial process of G and D makes up the two-player
min-max game where G tries to fool D while D is trained to
discriminate the generated data. Hence, the generated samples
are getting more and more indistinguishable from the real data.

GANs can be extended to a conditional model if both the
generator and discriminator are conditioned on some extra
information which could be any kind of auxiliary information.
We can perform the conditioning by feeding the extra infor-
mation as additional input layer and this model is defined as
conditional generative adversarial networks [23].

III. PROPOSED METHOD

In this section, with analysis of the characteristics of
infrared and visible images, we provide our fusion formula-
tion, the definition and design of loss functions. At the end
of this section, the design of network architecture is shown
concretely.

A. Problem Formulation

We formulate the fusion problem as a conditional GAN
model by constructing a dual-discriminator conditional GAN.
To fuse images of different resolutions, without loss of gener-
ality, we make an assumption that the resolution of the visible
image v is 4 × 4 times that of the infrared image i .

The entire procedure of our proposed DDcGAN is shown
in Fig. 1. Given a visible image v and an infrared image
i , our ultimate goal is to learn a generator G conditioned
on them and the generated image G (v, i) is encouraged to
be realistic and informative enough to fool the discrimina-
tors. Simultaneously, we exploit two adversarial discriminators
Dv and Di , and they respectively generate a scalar that
estimates the probability of the input from real data rather
than G. Specifically, Dv aims to distinguish the generated
image from the visible image, while Di is trained to dis-
criminate between the original low-resolution infrared image
and down-sampled generated/fused image. Average-pooling
is employed here for downsampling due to its retention of
low-frequency information compared with max-pooling and
the thermal radiation information is mainly presented in this
form. Put slightly differently, for the sake of the balance
between the generator and discriminators, except for the input
of discriminators, we do not feed the source images v and
i as additional/conditional information to Dv and Di . That
is, the input layer of each discriminator is a single-channel
layer containing the sampled data rather than a two-channel
layer containing both the sampled data and the corresponding
source image as the conditional information. Because when the
condition and the sample to be discriminated are the same,
the discrimination task is simplified to judge whether the
input images are the same and it is a simple enough task
for neural networks. When the generator is unable to fool
the discriminator, the adversarial relationship will fail to be
established and the generator will tend to generate randomly.
Consequently, the model will lose its original meaning.

We denote the downsampling operator as ψ , which is
implemented by two average pooling layers due to its retention
of low frequency information. Both layers summarize a 3 × 3
neighborhood and use a stride of 2. Accordingly, the training
target of G can be formulated as minimizing the following
adversarial objective

min
G

max
Dv ,Di

E
[
log Dv (v)

] + E
[
log (1 − Dv (G (v, i)))

]
+E

[
log Di (i)

] + E
[
log (1 − Di (ψG (v, i)))

]
. (7)

Conversely, the goal of discriminators is to maximize Eq. (7).
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Through the adversarial process of the generator G and two
discriminators (Dv and Di ), the divergence between PG and
two real distributions, i.e., PV and PI , will become smaller
simultaneously, where PG is the probability distribution of the
generated samples, PV is the real distribution of the visible
images and PI is that of the infrared images.

B. Loss Function

Initially, the success of GANs was limited as they were
known to be unstable to train and may result in artifacts and
noisy or incomprehensible results [33]. A possible solution
to solve the problem of artifacts and incomprehensible results
is to introduce a content loss to include a set of constraints
into the networks. Thus, in this paper, the generator is not
only trained to fool discriminators but also tasked to constraint
similarity between the generated image and source images in
the content. Therefore, the loss function of the generator is
composed by an adversarial loss Ladv

G and a content loss Lcon,
with a weight λ controlling the trade-off:

LG = Ladv
G + λLcon, (8)

where Ladv
G comes from the discriminators and is defined as:

Ladv
G = E

[
log (1 − Dv (G (v, i)))

]
+E

[
log (1 − Di (ψG (v, i)))

]
. (9)

As the thermal radiation and texture details are mainly
characterized by pixel intensities and gradient variation [17],
respectively, we employ the Frobenius norm to constrain the
downsampled fused image to have similar pixel intensities
with the infrared image as the data fidelity term. By con-
straining the relationship of pixel intensities of downsampled
fused image and the low-resolution infrared image, we can
considerably prevent loss of texture information caused by
compression or blur and inaccuracy due to forced upsampling.
According to the aforementioned constraint, the thermal target
remains prominent in the fused image. The TV norm [34] is
applied in the regularization term to constrain the fused image
to exhibit similar gradient variation with the visible image.
Compared with the �0 norm, the TV norm is able to solve the
non-deterministic polynomial-time hard problem effectively.
With a weight η to tradeoff the differences of pixel intensities
and gradient variation, we can obtain the content loss:

Lcon = E

[
‖ψG (v, i)− i‖2

F + η‖G (v, i)− v‖T V

]
. (10)

The discriminators in DDcGAN, i.e., Dv and Di , play a role
of discriminating between source images and the generated
fused image. The adversarial losses of discriminators can
calculate the JS divergence between distributions and thus
identify whether the intensity or texture information is unre-
alistic and thus encourage matching the realistic distribution.
The adversarial losses are defined as follows:
LDv = E

[−logDv (v)
]+E

[−log (1 − Dv (G (v, i)))
]
, (11)

LDi = E
[−logDi (i)

] + E
[−log (1−Di (ψG (v, i)))

]
. (12)

C. Network Architecture

1) Generator Architecture: The generator consists
of 2 deconvolution layers, an encoder network and a
corresponding decoder network, as presented in Fig. 2. Since
the infrared image has a lower resolution, we firstly employ
a mapping before encoding. Rather than simple interpolation
by the nearest, bilinear or bicubic method, we introduce a
deconvolution layer [35] to learn a mapping from low to
high resolution. Without defining an upsampling operator,
this mapping is different from traditional upsampling and its
parameters are obtained automatically by training. The output
of the deconvolution layer is a high-resolution feature map
rather than an upsampled infrared image. We also pass the
visible image through an independent deconvolution layer
which generates a feature map with the same resolution.
Results obtained by deconvolution layers are concatenated
and fed as the input of the encoder. The process of feature
extraction and fusion are both performed in the encoder
and fused feature maps are produced as the output. These
maps are then fed to the decoder for reconstruction and the
generated fused image is of the same resolution with the
visible image.

The encoder consists of 5 convolutional layers and each
layer can obtain 48 feature maps by 3 × 3 filters. To mit-
igate the vanish of gradient, remedy feature loss and reuse
previously computed features, DenseNet [36] is applied and
short direct connections are built between each layer and all
layers in a feed-forward fashion. The decoder is a 5-layer
CNN and the setting of each layer is illustrated in Fig. 2.
The strides of all convolutional layers are set as 1. To avoid
exploding/vanishing gradients and speed up training, batch
normalization is applied. ReLU activation function is used to
speed up the convergence [37] and avoid gradient sparsity.

2) Discriminator Architecture: Discriminators are designed
to play an adversarial role against the generator. In particular,
Dv and Di aim to distinguish the generated images from
the visible and infrared images, respectively. However, these
two types of source images are manifestations of different
phenomena, thus have considerably different distributions.
In other words, there are conflicts in the guidance of Dv
on G and Di on G. In our network, we should not only
consider the adversarial relationship between the generator and
discriminators but also take into account the balance of Dv
and Di . Otherwise, either the strength or weakness of one
discriminator will finally lead to the inefficiency of the other
as the training proceeds. In our work, the balance is achieved
by the design of network architectures and training strategy
(as discussed in Sec. V-A).

The discriminators Dv and Di share the same architecture,
which is set to be less complicated compared with the genera-
tor architecture, as shown in Fig. 3. The stride of all convolu-
tional layers is set as 2. In the last layer, we employ the tanh
activation function to generate a scalar that estimates the prob-
ability of the input image from source images rather than G.

IV. APPLICATION TO MEDICAL IMAGE FUSION

In this section, we apply our proposed method to fuse
medical images such as MRI and PET image fusion. We treat
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Fig. 2. The overall architecture of our generator, including layers of encoder and decoder. 3 × 3: filter size, Conv(nk): convolutional layer which obtains k
feature maps, BN: batch normalization.

Fig. 3. The overall architecture of our discriminator. 3 × 3: filter size,
Conv(nk): convolutional layer which obtains k feature maps, BN: batch
normalization, FC: fully connected layer.

the PET images shown in pseu-do-color as color images, and
DDcGAN is applied for fusing of high-resolution MRI image
and low-resolution intensity component of PET image. In the
following, we first introduce the background of medical image
fusion, and then take the MRI and PET image fusion as an
example and provide some implementation details.

A. Background

Multi-modal medical images have the advantage of offer-
ing diversified features to enhance robustness and accuracy
and thus, the fusion of them provides a powerful tool for
biomedical research and clinical applications, such as med-
ical diagnostics, monitoring and treatment [38], [39]. These
medical imaging can be divided into structural and functional
systems [40]. Structure from motion methods [41] are typically
used to obtain the structural information in natural image
domain. While in medical imaging, X-ray, MRI and Computed
Tomography are a typical structural system, which can provide
structural and anatomical information with high resolution.
The functional system can provide functional and metabolic
information, such as PET and Single-Photon Emission Com-
puted Tomography while these images are often accompanied

by low resolution. The limited resolution restricts their clinical
applications and encourages the fusion of functional and
anatomical images.

According to the theories applied, existing medical fusion
methods can be summarized into different categories, such
as substitution methods [40], [42], arithmetic combination
methods [43], and multi-resolution methods [44], [45]. In this
paper, we take the MRI and PET image fusion as an example
and apply our DDcGAN to solve this problem. MRI images
are superior in capturing the details of soft tissue structures in
organs such as brain, heart and lungs in high spatial resolution.
The PET images are obtained by nuclear medicine imaging to
provide functional and metabolic information, such as blood
flow and flood activity. The captured images are usually rich
in color but low in spatial resolution. Therefore, by fusing
these two type medical images, the results will contain both
spatial and spectral features in the source images for qualitative
detection and quantitative determination.

The PET image in pseudo-color is traditionally treated as
a color image and the color is the representation of the
functional information, as shown in Fig. 4(a). In order to
retain it, the color of the fused image should be as similar
to that of the PET image as possible. For this purpose,
de-correlated color models are used to separate the achromatic
and chromatic information in the color into different channels.
Then, the achromatic channel is substituted or fused with
the MRI image [46]. In our work, we employ the intensity,
hue and saturation (IHS) de-correlated color model and the
intensity channel is the specific achromatic channel to be
fused, as shown in Fig. 4(b). Because the other two channels
are the representation of chromatic information, which ought
to remain unchanged during the fusion process, the PET image
is similar with the infrared image in using the intensity dis-
tribution to represent feature information. A slightly different
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Fig. 4. Schematic illustration of fusing the low-resolution PET image in RGB channels and the high-resolution MRI image in the gray channel to obtain
the high-resolution fused image in RGB channels.

Fig. 5. The entire procedure of applying the proposed DDcGAN for MRI
and PET image fusion.

point is that the PET image uses it to represent the functional
information while in the infrared image, it is the reflection of
thermal radiation. By contrast, the MRI image can provide
detailed morphological information in the form of texture.
It is mainly characterized by the gradients. Thus, like the
visible image, the advantage of rich texture information in
the MRI image can be applied to overcome the uncertainty
of contouring the soft tissue structures on the PET image.
From this point of view, the essence of fusing MRI and PET
image has a great deal of similarity with that of fusing visible
and infrared images. As shown in Fig. 4, the fused image is
supposed to minimize both the spatial distortion caused by
the spatial detail loss between the MRI (Fig. 4(c)) and the
intensity channel (Fig. 4(d)) and the spectral distortion caused
by color differences between the PET (Fig. 4(b)) and the fused
intensity channel (Fig. 4(d)) simultaneously. Accompanied by
the processed components of H and S channels, the final fused
image is a three-channel image with abundant color and detail
information, as shown in Fig. 4(e).

B. MRI and PET Image Fusion via DDcGAN

Uniformly, we assume that the resolution of the MRI image
is 4 × 4 times that of the intensity component of the PET
image and take it as an example. The entire fusion procedure
is illustrated in Fig. 5. The multispectral input PET image
with RGB channels are firstly transformed into IHS channels,
as shown in Eq. (13), with the intensity channel displaying
the brightness in a spectrum, the hue channel showing the

property of the spectral wavelength, and the saturation channel
demonstrating the purity of the spectrum:⎛
⎝ IPET

V 1PET
V 2PET

⎞
⎠ =

⎡
⎣1/

√
3 1/

√
3 1/

√
3

1/
√

6 1/
√

6 −2/
√

6
1/

√
2 −1/

√
2 0

⎤
⎦

⎛
⎝RPET

GPET
BPET

⎞
⎠ . (13)

The components of H and S channels can be represented
by variables V1 and V2 as follows:

HPET = tan−1
(

V 1PET

V 2PET

)
, (14)

SPET =
√

V 12
PET + V 22

PET. (15)

The fusion process is produced on the component of I
channel of the PET image and the MRI image. Correspond-
ingly, the input of the generator is the low-resolution IPET
and the high-resolution MRI image M . The output of the
generator Ifuse = G (M, IPET) is the new I channel of the fused
image with high resolution. During the training procedure,
the discriminator Di is trained to discriminate differences
between Ifuse and IPET, while the probability of the input
image from MRI images rather than G is obtained by the
discriminator Dv . Therefore, the specific loss function of the
generator can be expressed as follows:

LG = Ladv
G + λLcon, (16)

where the adversarial loss function Ladv
G is defined as:

Ladv
G = E

[
log (1 − Dv (G (M, IPET)))

]
+E

[
log (1 − Di (ψG (M, IPET)))

]
. (17)

And the content loss Lcon is modified as:
Lcon = E

[
‖ψG (M, IPET)− IPET‖2

F

+η‖G (M, IPET)− M‖T V ] . (18)

For the discriminators Dv and Di , the adversarial losses are
respectively defined as follows:

LDv = E
[−logDv (M)

]
+E

[−log (1 − Dv (G (M, IPET)))
]
, (19)

LDi = E
[−logDi (IPET)

]
+E

[−log (1 − Di (ψG (M, IPET)))
]
. (20)

To preserve the chromatic information in the PET image,
the components of H and S channels of the PET image and
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the fused image should be as identical as possible. For these
two channels, we directly employ the bicubic interpolation
as the upsampling operation. The upsampled components are
presented as Hnew and Snew and their resolutions are both
4 × 4 time those of HPET and SPET. According to Eq. (14)
and Eq. (15), the variables V1 and V2 can be updated by the
components of H and S channels:

V 1new = SnewsinHnew, (21)

V 2new = SnewcosHnew. (22)

The inverse transform to obtain the final fused image in
RGB channels from IHS channels can be represented as:
⎛
⎝Rnew

Gnew
Bnew

⎞
⎠ =

⎡
⎣1/

√
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√
6 1/

√
2
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√
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√

6 −1/
√

2
1/

√
3 −2/

√
6 0

⎤
⎦

⎛
⎝ Ifuse

V 1new
V 2new

⎞
⎠ . (23)

V. EXPERIMENTAL RESULTS

In this section, to validate the effectiveness of our DDcGAN,
we firstly compare it with several state-of-the-art methods on
publicly available datasets by qualitative comparisons both for
infrared and visible image fusion and PET and MRI image
fusion. For quantitative comparisons, we utilize six metrics to
evaluate the fusion results. The experiments of discriminator
analysis are also conducted.

A. Dataset and Training Details

1) Dataset: We validate the proposed DDcGAN on the pub-
licly available TNO Human Factors dataset1 for the infrared
and visible image fusion. We select 36 infrared and visible
image pairs from the dataset and crop them into 27, 264 patch
pairs with 84 × 84 pixels. As we focus on fusing images of
different resolutions while the source images in the dataset are
of the same resolution, we downsample the infrared images to
one quarter resolution. Therefore, all visible image patches are
of size 84 × 84 and all infrared patches are of size 21 × 21.
Parameters in our model are set as λ = 0.5 and η = 1.2. The
entire network is trained with a learning rate of 2×10−3 with
exponentially decaying to 0.75 of the original value after each
epoch. The batch size is set as 24.

The application of our proposed DDcGAN to MRI and PET
image fusion is validated on the publicly available Harvard
medical school website.2 The original PET and MRI images
are all of size 256 × 256. For the purpose of validating the
effectiveness of our method on fusing images of different res-
olutions, each channel of the PET images is downsampled to
the size of 64×64. 83 PET and MRI pairs are downloaded and
cropped into 9, 984 patch pairs as our training set. Similarly,
all MRI patches are of size 84×84 and the intensity patches of
all PET images are of size 21 × 21. The parameters, learning
rate and the batch size are the same with those set in the
infrared and visible fusion.

1https://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029
2http://www.med.harvard.edu/AANLIB/home.html

2) Training Details: During the training process, the prin-
ciple is to make the generator and discriminators form an
adversarial relationship with each other. In order to overcome
some problems in training GAN and improve the training
results, rather than taking turns training G, Dv and Di once
per batch in principle, we train Dv or Di more times if it fails
to discriminate the data from G and vice verse. The detailed
training process is shown in Alg. 1. Except for Lmax , Lmin and
LGmax , a threshold for the number of iterations is additionally
set. The reason is that the goal of updating the generator
or discriminators more times is to keep the balance between
them. However, there are still situations where these networks
have been trained many times but still cannot achieve balance
conditions. Especially for the generator, more training steps
to minimize the adversarial loss may lead to higher content
loss and higher LG , failing to achieve the balance condition.
Thus, it can avoid the algorithm falling into an endless loop.
Moreover, updating other networks timely will enable them to
play a new role in guiding the current network, thus possibly
avoiding the above-mentioned situation.

During the testing phase, we only use the trained generator
to generate fused images. Since there are no fully connected
layers in our generator, the input source images can be of any
size with a predefined resolution ratio.

B. Results and Analysis on Infrared and Visible Image Fusion

To verify the effectiveness of our proposed DDcGAN,
we compare it with seven state-of-the-art image fusion
methods, including directional discrete cosine transform
and principal component analysis (DDCTPCA) [14], hybrid
multi-scale decomposition (HMSD) [47], fourth-order partial
differential equations (FPDE) [48], gradient transfer fusion
(GTF) [17], different resolution total variation (DRTV) [49],
DenseFuse [29] and FusionGAN [21]. Due to some of the
competitors require that source images share the same resolu-
tion, we upsample the low-resolution infrared images before
performing these methods for fusion. While in DRTV and
FusionGAN, as they can be applied to fuse images of different
resolutions, the preprocessing of up-sampling low-resolution
infrared images is unnecessary. The fused results of all meth-
ods are assessed both subjectively and objectively.

1) Qualitative Comparisons: We first report some intuitive
results on six typical image pairs, as shown in Fig. 6. Com-
pared with the existing fusion methods, our DDcGAN has
three distinctive advantages. First, our results can maintain the
high-contrast property of the infrared image, e.g., the thermal
targets are prominent in our fused images, as shown in
the first and second examples, which is very important for
the subsequent target detection task. Second, our results can
preserve abundant texture details from the visible images,
e.g., the backgrounds contain more detail information in
our fused images, as shown in the third to fifth examples,
which is beneficial for accurate target recognition. Third, our
results are clearer due to that it does not suffer from thermal
radiation information blurring caused by upsampling of the
low-resolution infrared images, as shown in the sixth example.

As can be seen from Fig. 6, DDCTPCA, HMSD, FPDE and
DenseFuse cannot highlight the thermal targets well, while
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Algorithm 1 Training Process of DDcGAN

GTF, DRTV and FusionGAN cannot obtain abundant texture
details. Besides, they all suffer from thermal radiation informa-
tion blurring except DRTV and FusionGAN. Although DRTV
can prevent loss of texture information caused by upsampling
when fusing source images of different resolutions, the results
of DRTV inevitably suffer from staircase effects due to
the application of first-order TV. In contrast, the results of
DDcGAN can obviously avoid staircase effects and details in
our results are more similar to those in the visible images.
Compared with FusionGAN, due to the employment of the
deconvolution layers, the introduction of the discriminator Di ,
different network architecture and improved training strategy,
our fused results can highlight thermal targets more obviously
by higher contrast and meanwhile, contain more natural details
which are more indistinguishable from the visible images.
Excluding the effects of deconvolution layers, different net-
work architecture and the training strategy, the influence of the
additional discriminator will be analyzed later in Sec. V-B.3.
Generally, our DDcGAN works well and the fused images are
more like super-resolved infrared images which also contain
abundant texture detail information in visible images.

2) Quantitative Comparisons: We further report quantita-
tive comparisons of our DDcGAN and the competitors on
the rest 15 image pairs in the dataset. Eight metrics such
as entropy (EN) [50], mean gradient (MG), spatial frequency
(SF), standard deviation (SD) [51], peak signal-to-noise ratio

(PSNR), and correlation coefficient (CC), structural similarity
index measure (SSIM) [52] and visual information fidelity
(VIF) [53] are used for evaluation.

• Entropy (EN): This metric can measure the amount infor-
mation contained in the fused image from the perspective
of information theory and is defined as follows:

E N = − ∑L−1
l=0 pl log2 pl,

where pl denotes the normalized histogram of corre-
sponding gray level in the fused image. And the number
of all the gray levels is set as L. The larger entropy means
that there is more information reserved in the image and
the method achieves a better performance.

• Mean gradient (MG): MG is mathematically defined as:

MG

=
∑M

i=2
∑N

j=2

√((
xi, j −xi−1, j

)2+(
xi, j −xi, j−1

)2
)
/2

(M − 1) (N − 1)
.

The larger MG is, the more gradient information the
image contains and the better fusion performance the
algorithm has.

• Spatial frequency (SF): SF is based on the gradient
distribution to effectively reveal the details and texture
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Fig. 6. Qualitative comparison of our DDcGAN with 7 state-of-the-art methods on 6 typical infrared and visible image pairs. From top to bottom: infrared
image, visible image, fusion results of DDCTPCA [14], HMSD [47], FPDE [48], GTF [17], DRTV [49], DenseFuse [29], FusionGAN [21] and our DDcGAN.
For more intuitive comparison, the infrared images are enlarged in the first row and the original low-resolution infrared images are shown in the white box
in the top left corner.
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of the image. It is defined by spatial row frequency (RF)
and column frequency (CF):

SF =
√

RF2 + C F2,

where RF =
√∑M

i=1
∑N

j=2

(
xi, j − xi, j−1

)2 and C F =√∑M
i=2

∑N
j=1

(
xi, j − xi−1, j

)2. The larger SF, the richer
edges and texture details the image contains. And human
perception is more sensitive to the image with larger SF.

• Standard deviation (SD): SD is a metric reflecting contrast
and distribution. Attention of human is more likely to be
attracted by the area with high contrast. Thus, the larger
SD, the better visual effect the fused image achieves.
Mathematically, SD is defined as:

SD =
√

1
M N

∑M
i=1

∑N
j=1

(
xi, j − μ

)2
,

where μ is the mean value of the image x .
• Peak signal-to-noise ratio (PSNR): PSNR is a metric

reflecting the distortion by the ratio of peak value power
and noise power:

PSN R = 10log10
r2

M SE
,

where r is the peak value of the fused image and is set
as 256 in this paper. M SE is the mean square error that
measures the dissimilarity between the fused image and
source images and is defined as follows:

M SE = ωa M SEa f + ωb M SEb f ,

where M SEx f = 1
M N

∑M−1
i=0

∑N−1
j=0

(
xi, j − fi, j

)2.
A larger PSNR indicates the less distortion the fusion
process produces and the fused image is more similar to
the source images.

• Correlation coefficient (CC): The metric CC measures the
degree of linear correlation between the source images
and the fused image. It is mathematically defined as:

CC = ωara f + ωbrb f ,

where rx f =
∑M

i=1
∑N

j=1(xi, j −μx )( fi, j −μ f )√∑M
i=1

∑N
j=1(xi, j −μx )

2∑M
i=1

∑N
j=1( fi, j −μ f )

2
, μx

and μ f denote the mean values of the source image x
and the fused image f , respectively. A larger CC indicates
that the fused image is more similar to the source images.

• Structural similarity index measure (SSIM): SSIM is the
widely used metric which models the loss and distortion
between two images according to their similarities in
light, contrast and structure information. Mathematically,
SSIM between images x and y can be defined as follows:
SSI Mxy =

∑
xi ,yi

2μxiμyi +c1

μ2
xi

+μ2
yi

+c1
· 2σxiσyi +c2

σ 2
xi

+σ 2
yi

+c2
· σxi yi +c3

σxiσyi +c3
,

where μ denotes the mean value, σ is the standard
deviation/covariance, c1, c2 and c3 are the parameters to
make the algorithm stable. Thus, SSIM between source
images a, b and the fused image f can be defined as:

SSI M = ωa SSI Ma f + ωb SSI Mb f .

Fig. 7. Quantitative comparison of our DDcGAN for infrared and visible
image fusion with 7 state-of-the-art methods. Means of metrics for different
methods are shown in the legends.

• Visual information fidelity (VIF): The metric is consistent
with human visual system and measures the information
fidelity. It can be computed by four steps: (a) filter
and divide the source images and the fused image into
different blocks; (b) evaluate the visual information of
each block; (c) calculate the VIF for each subband;
(d) calculate the overall metric. A large VIF indicates
that the fusion method has a good performance.

The results of quantitative comparisons are summarized
in Fig. 7. As can be seen from the statistical results, our
DDcGAN can generate the largest average values on the
first 4 metrics: EN, MG, SF and SD. In particular, our
DDcGAN achieves the best values of EN, MG, SF and
SD on 13, 13, 10 and 8 image pairs, respectively. For the
metric PSNR and CC, our DDcGAN can achieve comparable
results with the average values being the second largest. These
metrics only follow behind FPDE and FusionGAN by a narrow
margin, respectively. As for VIF and SSIM, our result is the
third and fourth largest respectively. These results demonstrate
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TABLE I

AVERAGE RUNTIME COMPARISON OF DIFFERENT METHODS ON THE 15 TESTING IMAGE PAIRS (UNIT: SECOND). AS FOR THE RUNTIME OF DEEP
LEARNING-BASED METHODS, THE FIRST VALUE IS TESTED ON CPU AND THE SECOND VALUE IS TESTED ON GPU

that our method can reserve information to the greatest extent,
especially the most gradient information, the richest edges
and texture details, and the highest contrast, as shown in the
first four metrics. In addition, the results of our methods can
achieve considerable similarity with the source images.

The average runtime of different methods on the testing data
is provided in Table I. All the methods are tested on a desktop
with 3.4 GHz Intel Core i5 CPU. Since there are three deep
learning-based methods (i.e., DenseFuse, FusionGAN and
DDcGAN), these methods are also tested on NVIDIA Geforce
GTX Titan X. The reason why the runtime of DDcGAN
is slower is that in the testing phase, the input of our model is
the whole image. Thus, for each test image pair, our model is
rebuilt according to their size and the parameters of the trained
model are restored into the rebuilt model to avoid the possible
seam effects caused by cropping tested images into patches
and the distortion caused by resizing images. Another reason
is that our model is deeper than other deep learning-based
methods, resulting in more test runtime.

3) Discriminator Analysis: There are two discriminators
presented in our proposed model, i.e., Dv and Di . In order
to illustrate the effect of each discriminator, we perform
four comparative experiments: (a) The entire networks merely
consist of the generator G and the ultimate training objective
is reduced to minimize Lcon in Eq. (10). (b) Di is not
employed and the adversarial relationship exists only between
G and Dv . (c) Dv is not embraced in the entire networks.
Thus, the adversarial game is established between G and Di .
(d) The fused images are generated by the method proposed
in this paper. All of G, Dv , and Di play a part in the
networks. All the comparative experiments are under the
same experimental settings and the fused results are shown
in Fig. 8.

In method (a), the training objective is to minimize the
content loss Lcon, which is the first-order TV model in essence.
This model performs well in preserving edges of the object
in the piecewise constant image while it inevitably produces
staircase effects [54], as can be seen in Fig. 8(a). With the
introduction of Dv , the staircase effects have been alleviated
in Fig. 8(b). However, the disadvantage is that the intensity
distribution of the fused image is modified according to
that of the visible image, leading to the reduction of the
prominence of the thermal targets. The separate introduction of
Di increases the contrast between the thermal targets and the
background, which is particularly evident in the prominence
of the bunker between the results shown in Fig. 8(a) and
Fig. 8(c). Nevertheless, the result of method (c) lacks in detail
information compared with method (b).

With a comprehensive consideration of advantages and
disadvantages of method (b) and (c), we propose a new

Fig. 8. Fused results on bunker when the discriminators in the entire networks
change. We highlight a region and zoom in it as shown in the bottom red
box. The infrared images are enlarged in the first plot, and the original
low-resolution infrared images are shown in the white box in the top left
corner.

structure based on conditional generative adversarial networks
with dual discriminator: Dv and Di . The use of Di can correct
the distinct differences of the intensity distribution between the
result of method (b) and the infrared image. Meanwhile, more
details and texture information can be added to the result of
method (c) by introducing Dv . Worthy of note that since the
discriminators increase from just Dv or Di to both of them,
the requirement and the training target of the generator become
harsher. Under the condition that there exists a contradictory
relationship between the discrimination tasks of Dv and Di

and according to the training strategy in Alg. 1, the training
of G, Dv or Di can be adjusted in case any of them loses its
specific function, the generation ability of the generator can be
further improved. On the promise that the thermal targets are
still prominent, the results of method (d) include more details
and these details look more similar to those in the visible
images by effectively solving the problem of staircase effects
compared with those shown in Figs. 8(b) and (c).

4) Generator Analysis: In the loss function of the gen-
erator G, there are two subitems, i.e., the adversarial loss
Ladv

G and the content loss Lcon. To verify the effect of
each subitem, three comparative experiments are performed:
(a) LG = λLcon. This comparative experiment is the same
with method (a) in Sec. V-B.3. G is trained to minimize
Lcon in Eq. (10). (b) LG = Ladv

G . The content loss is not
introduced in LG . Then G is only trained to fool Dv and
Di . It should be noted that in this method, due to the lack of
pixel-wise constraints, the introduction of the deconvolution
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Fig. 9. Fused results on bunker when the loss function of the generator LG
changes.

layers may cause the cavity effect. Thus, we replace these
layers with two upsampling layers to avoid this influence.
(c) LG = Ladv

G + λLcon. It is the proposed method. With the
same experimental settings, the fused results of these three
methods are shown in Fig. 9.

On the one hand, without the adversarial loss, the fused
result fails to exhibit more and clearer texture details in the
visible image, as shown in Fig. 9(a). On the other hand,
without the content loss, the generator is incapable of knowing
which type of information should be retained from source
images. Without the pixel-wise constraints, what the generator
can do is to make the probability distribution of generated
images close to that of source images. In this case, the fused
image may have high contrast and texture details. However,
the highlighted regions may not be the thermal targets in the
infrared image and texture details may be different from the
visible image, as shown in Fig. 9(b). Thus, when DDcGAN is
trained without the content loss, it will generate artifacts and
incomprehensible results. By combining these two subitems,
DDcGAN can solve this problem and generate a high-quality
fused image, as shown in Fig. 9(c).

C. Results on MRI and PET Image Fusion

According to corresponding schemes, we compare our
method with six other fusion methods separately based on
principal component analysis method such as DDCTPCA [14],
sparse representation method such as adaptive sparse represen-
tation (ASR) [56], wavelet transform method such as discrete
cosine harmonic wavelet transform (DCHWT) [55], saliency
method such as Structure-Aware [57] and deep learning-based
methods such as FusionGAN [21] and RCGAN [58]. Among
these methods, PCA is a classic theory applied for the fusion
of PET and MRI images. Based on PCA and taken as a
representation of comparison methods for infrared and visible
image fusion utilized in Sec. V-B, DDCTPCA is employed
here for comparison once more. ASR can be applied for
multi-modal image fusion and perform fusion and denoising
simultaneously. DCHWT takes into account the fusion of
multi-spectral image fusion. Structure-Aware is a method
expressly proposed for multi-modal medical image fusion.
FusionGAN and RCGAN are methods based on GAN and also
representations of infrared and visible image fusion methods.

Fig. 10. Qualitative comparison of our DDcGAN with 6 state-of-the-art
methods on 4 typical MRI and PET image pairs of different (from left to
right: #99, #81, #60 and #70) transaxial sections of the brain-hemispheric.
From top to bottom: PET image, MRI image, fusion results of DCHWT [55],
DDCTPCA [14], ASR [56], Structure-Aware [57], FusionGAN [21] and
RCGAN [58] and our DDcGAN. For more intuitive comparison, the PET
images are enlarged in the first row and the original low-resolution PET
images are shown in the white box in the top left corner.

In the remainder of this section, qualitative and quantitative
experiments are conducted to demonstrate the effectiveness of
our method on PET and MRI image fusion.

1) Qualitative Comparison: Four typical and intuitive
results on four different transaxial sections of the
brain-hemispheric are exhibited in Fig. 10. By comparison,
DCHWT, Structure-Aware and RCGAN significantly reduce
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TABLE II

AVERAGE RUNTIME COMPARISON OF DIFFERENT METHODS ON THE 20 TESTING IMAGE PAIRS (UNIT: SECOND). AS FOR THE RUNTIME OF DEEP
LEARNING-BASED METHODS, THE FIRST VALUE IS TESTED ON CPU AND THE SECOND VALUE IS TESTED ON GPU

Fig. 11. Quantitative comparison of our DDcGAN for PET and MRI image
fusion with 5 state-of-the-art methods. Means of metrics for different methods
are shown in the legends.

the intensity of colors in the PET image, leading to the
loss of functional information. By contrast, the results
generated by DDCTPCA, ASR, FusionGAN and DDcGAN
exhibit brighter and stronger colors. And among these four
methods, the colors of our results are the closest to those
of the original PET images. Furthermore, as a result of
the unsampling of low-resolution PET image, the results of
six comparison methods suffer from functional information
blurring, presented as blurred color information, as shown
in the first and second groups of results, and blurred details,
which can be seen in the third group of results. In terms of the
texture information retained from the MRI image, the results
of DDCTPCA and FusionGAN show the most obvious
fuzziness. Moreover, due to the fact that ASR performs fusion

and denoising simultaneously, the impurities in the MRI
image are eliminated in the fused image. However, some
image details are blurred in the meantime. Compared with
DCHWT, Structure-Aware and RCGAN, the details in our
results avoid blurring and the difficulty of recognition due to
darker colors, which can be seen in the fourth group.

2) Quantitative Comparison: Experiments of eight perfor-
mance metrics are performed here and the results of quantita-
tive comparisons on 20 test image pairs are shown in Fig. 11.
The 20 test image pairs are of different transaxial sections
of the brain-hemispheric. As for the first five metrics: EN,
MG, SF, SD and PSNR, our proposed method can achieve
the largest mean values with 19, 19, 10, 14 and 20 of all the
20 test pairs performing the best values, respectively. As for
the metrics CC and VIF, our method also shows comparable
results, generating the second largest average values and its
average values merely follow behind that of DDCTPCA and
that of FusionGAN respectively. As for SSIM, our method
generates the fifth largest average value, the reason is that
our method is designed to preserve the gradient variations in
the MRI image regardless of the pixel intensity, leading to a
small SSIM value between the fused intensity channel and the
MRI image. Thus, it can be concluded from the statistical
results that for PET and MRI image fusion, our method
can also obtain relatively satisfactory results by reserving the
texture information, i.e., morphological information, and color
information, i.e., functional and metabolic information, to a
great extent at the same time.

The average runtime of the 6 methods on the 20 testing
image pairs is also reported in Table II.

VI. CONCLUSION

In this paper, we proposed a new deep learning-based
infrared and visible image fusion method by constructing a
dual-discriminator conditional GAN, named DDcGAN. It does
not require the ground-truth fused images for training, and
can fuse images of different resolutions without introducing
thermal radiation information blurring or visible texture detail
loss. Extensive comparisons on six metrics with other seven
state-of-the-art fusion algorithms demonstrate that our DDc-
GAN can not only identify the most valuable information, but
also can keep the largest or approximately the largest amount
of information in the source images. Moreover, our proposed
DDcGAN is applied to the fusion of PET and MRI images,
and it can also achieve an advanced performance compared
with five state-of-the-art algorithms.
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