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MURF: Mutually Reinforcing Multi-Modal Image
Registration and Fusion
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Abstract—Existing image fusion methods are typically limited
to aligned source images and have to “tolerate” parallaxes when
images are unaligned. Simultaneously, the large variances between
different modalities pose a significant challenge for multi-modal
image registration. This study proposes a novel method called
MURF, where for the first time, image registration and fusion are
mutually reinforced rather than being treated as separate issues.
MURF leverages three modules: shared information extraction
module (SIEM), multi-scale coarse registration module (MCRM),
and fine registration and fusion module (F2M). The registration
is carried out in a coarse-to-fine manner. During coarse registra-
tion, SIEM first transforms multi-modal images into mono-modal
shared information to eliminate the modal variances. Then, MCRM
progressively corrects the global rigid parallaxes. Subsequently,
fine registration to repair local non-rigid offsets and image fusion
are uniformly implemented in F2M. The fused image provides
feedback to improve registration accuracy, and the improved regis-
tration result further improves the fusion result. For image fusion,
rather than solely preserving the original source information in
existing methods, we attempt to incorporate texture enhancement
into image fusion. We test on four types of multi-modal data (RGB-
IR, RGB-NIR, PET-MRI, and CT-MRI). Extensive registration and
fusion results validate the superiority and universality of MURF.

Index Terms—Multi-modal images, image registration, image
fusion, contrastive learning.

I. INTRODUCTION

DUE to the limitations of hardware devices, images from
one type of sensor can merely characterize partial infor-

mation. For instance, the reflected light information captured
by visible sensors can describe scene textures while it is sus-
ceptible to light and shading. Complementarily, the thermal
radiation information captured by infrared sensors is insensitive
to light and can reflect the essential attributes of scenes and
objects. Multi-modal image fusion aims to synthesize a single
image by integrating complementary source information from
different types of sensors. As shown in Fig. 1, the single fused
image exhibits better scene representation and visual perception,
which can benefit various subsequent tasks, such as semantic
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Fig. 1. Schematic illustration of different unaligned multi-modal image fusion
tasks (first row: unaligned source images; second row: fusion results of a state-
of-the-art fusion method (U2Fusion [6]); last row: results of MURF).

segmentation [1], object detection, and tracking [2], scene un-
derstanding [3], etc. Therefore, image fusion has a wide variety
of applications, from security to industrial and civilian fields [4],
[5].

However, existing fusion methods require source images to
be accurately aligned and do not account for parallaxes. When
source images are unaligned, the parallaxes will lead to parallax
fusion artifacts, as intuitively illustrated in the second row of
Fig. 1. For unaligned source images, these fusion methods
require other multi-modal image registration methods as pre-
processing to eliminate parallaxes. In this case, registration
and fusion are separate issues. As image fusion is merely a
downstream task, the fused image cannot provide feedbacks to
improve registration accuracy. Thus, existing fusion methods
have to “tolerate” rather than “fight” the pre-registration mis-
alignments, as illustrated in Fig. 2, which was also presented
in our preliminary version [7]. Nevertheless, considering the
characteristics of fused images, it is possible for image fusion
to inversely eliminate misalignments. First, the fused images
integrate the information from both modalities. The alleviated
modal variances reduce the registration difficulty. Second, the
fusion process discard some superfluous information, reducing
its negative impact on registration. Third, misalignments in fused
images lead to repeated salient structures, while accurate regis-
tration encourages gradient sparseness. Thus, gradient sparsity
can act as a criterion to improve registration accuracy in a
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Fig. 2. Separate registration and fusion in existing methods and the proposed
mutually reinforcing framework.

feedback fashion. When image fusion helps eliminate misalign-
ments, the more precisely aligned data further promotes fusion
results.

Specific to individual tasks, either multi-modal image regis-
tration or fusion has its own bottlenecks. For multi-modal image
registration, there are three remaining challenges. First, it is dif-
ficult to design a registration method applicable to multi-modal
data that can break through the barriers of modal variances. Ex-
isting metrics are insensitive to modal variances. Some metrics
assume that the intensity distributions of multi-modal images
have linear correlation, which is not always the case. Some
methods use image translation to generate pseudo-mono-modal
images while this method is contrary to the fact that multi-
modal data is not one-to-one corresponding. Second, to elim-
inate modal variances through a transformation model, some
factors that may limit the implementation of transformation
model should be considered. For instance, we should consider
the non-sparsity of features to enable network convergence, the
computational complexity of loss function to facilitate the back
propagation, and the possibility of existence of optimal solution.
These factors make design of transformation model challenging.
Third, it is of practical importance to improve the registration
universality. Some methods only work for specific multi-modal
data; some can only handle rigid deformations; and some meth-
ods effective for non-rigid deformations have difficulty in main-
taining the rigidity of objects. Thus, it is necessary to design a
method broadly applicable to a wide range of multi-modal data
and both rigid and non-rigid deformations. For image fusion, a
general purpose is to generate a single fused image to present
the most amount of information, partly represented by gradients.
Thus, the preservation of scene content, especially textures, is
an issue that most fusion methods strive to address. In terms
of practical applications, the fused image should contain more
scene content and contribute positively to subsequent tasks.
From this point of view, it is reasonable and necessary to
enhance low-quality texture details in source images into the
fused image, rather than merely preserving original textures.
Unfortunately, this issue has not been noticed and addressed in
existing fusion methods.

The proposed MURF addresses the limitations of existing
multi-modal image registration methods and fusion methods
by jointly realizing them in a mutually reinforcing framework.
The proposed MURF consists of three main modules for shared

information extraction, global rigid and local non-rigid defor-
mation correction, and image fusion. The multi-modal image
registration is handled in a coarse-to-fine approach. The coarse
registration is based on the extracted mono-modal information
and modeled as an affine transformation and realized through
a multi-scale registration network. Fine registration and image
fusion are realized in a single module, which relies on the charac-
teristics of fused images to further improve registration accuracy
and incorporates texture enhancement. The characteristics and
contributions of MURF are summarized as:

1) To break through the bottleneck of requiring aligned
source images in existing fusion methods, we for the first
time interact multi-modal image registration and fusion
in a mutually reinforcing framework through neural net-
works. Subsequently, the proposed method is applicable
to unaligned source images, resulting in improved regis-
tration accuracy and fusion performance;

2) For multi-modal image registration, we apply a coarse-
to-fine strategy where both global rigid transformations
and local non-rigid transformations are considered. In
the coarse phase, we transfer multi-modal image regis-
tration to the mono-modal shared information registration
through contrastive learning. It enables application of
metrics insensitive to modal variances. In the fine phase,
the feedback of fused image and the explored inverse
deformation both help correct misalignments;

3) For image fusion, we aim to not only preserve the scene
content in original source images, but also to enhance their
textures in the fused image for a more detailed scene ex-
pression. For these purposes, we design a fusion loss based
on gradient evaluation, preservation, and enhancement,
and introduce a gradient channel attention mechanism;

4) The proposed registration and fusion networks are applied
to a variety of multi-modal data. We test the proposed
MURF on four publicly available datasets, including
RGB-IR, RGB-NIR, PET-MRI, and CT-MRI image pairs.
Qualitative and quantitative results validate the univer-
sality and superiority of MURF in terms of registration
accuracy and fusion performance.

A preliminary version of this paper is RFNet [7]. The most
significant new contribution is the broadening of application sce-
narios. In the preliminary version, limited by image translation,
RFNet can only be applied to RGB-NIR image pairs of street
scenes. In this version, by revising the method for eliminating
modal variances between multi-modal images, MURF is appli-
cable to more multi-modal combinations, including RGB-IR,
RGB-NIR, PET-MRI, and CT-MRI image pairs. The specific
technical improvements over the preliminary version are in four
aspects:

1) For the way to eliminate modal variances (i.e., transform
multi-modal registration into mono-modal registration),
RFNet employs image translation. Its application scenar-
ios are limited due to the lack of one-to-one correspon-
dence in multi-modal data. MURF applies contrastive
learning to extract shared information and transfers mono-
modal from the image domain to a common feature do-
main, lifting the restriction of image translation;
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2) For the coarse multi-modal image registration, we revise
the single-scale registration to a multi-scale progressive
registration strategy. It speeds up the convergence and
increases the registration accuracy;

3) For fine registration, RFNet only relies on the feedback and
properties of fused images to correct local offsets. In this
work, on the basis of feedback, we also explore the inverse
deformation field for supervision. It further improves the
fine-registration accuracy;

4) For image fusion, RFNet designs network architecture and
loss function for texture retention. In MURF, we aim not
only to preserve the original textures but also to enhance
the textures with poor visibility in source images and
display the enhanced textures in the fused image to provide
a more detailed scene expression.

II. RELATED WORK

A. Multi-Modal Image Registration

Multi-modal image registration is complicated due to appear-
ance variability caused by different modalities. The problem
arises in multi-sensor and medical images [8]. Generally, image
registration methods can be divided into traditional and deep
learning-based methods.

Traditional methods can be classified into three categories [9].
i) Transformation-based methods. They manually analyse com-
mon characteristics of multi-modal images and extract descrip-
tors to exhibit greater consistency [10], [11], [12]. Consid-
ering accuracy and optimization, the transformation models
should be meticulously designed; ii) Measure-based methods.
The correlation-based metrics [13], [14], [15] assume that the
intensity distributions of multi-modal images have a linear corre-
lation. They are only applicable to specific types of data, which
limits their scope of application. For the information theory-
based metrics [16], [17], [18], it is difficult to determine the
global maximum in the entire space; iii) Optimization methods.
They consider applicable structures and objective functions.
Despite their good performance, traditional methods need to
consider many factors when dealing with complicated multi-
modal data.

To avoid the concerns of traditional methods, deep learning
has been partly or wholly applied in transformation and opti-
mization. On the one hand, some methods use networks to design
transformation models. FIRE [19] uses a network to learn a
modality-independent latent representation for cycle-consistent
cross-modality synthesis. Similarly, Nemar [20] learns a cross-
modal translation. Then, it optimizes a uni-modal metric com-
paring the translated transformed image and the other source im-
age for registration. However, multi-modal data is not one-to-one
corresponding. For instance, the same thermal radiation property
in an infrared image can correspond to diverse textures in a
visible image. Thus, the reliance on cross-modal translation to
eliminate modal variances is inaccurate. On the other hand, deep
learning-based methods also require metrics for optimization.
Although deep learning can alleviate the optimization difficul-
ties of traditional methods, the solution in these methods is still

thorny. First, some information theory-based metrics are com-
putationally intractable for gradient descent. Second, metrics
are insensitive to modal variances while existing cross-modal
translation is inaccurate. Third, some sparse common features
are not suitable for gradient descent. It is difficult to achieve
a balance between alleviating modal variances and ensuing
feature richness. Therefore, it remains challenging to develop
appropriate registration metrics practical for multi-modal data
and gradient descent.

In this work, we apply a coarse-to-fine strategy for multi-
modal registration. In the coarse phase to correct global par-
allaxes, we translate two source domains to a common space,
thereby eliminating modal variances and transforming multi-
modal registration into mono-modal registration. With features
with higher consistency, the metrics insensitive to modal vari-
ances are applicable for optimization through gradient descent.
In the fine phase to correct local offsets, we utilize the feedback
of fused images and explore inverse deformation fields to further
improve accuracy.

B. Multi-Modal Image Fusion

Existing fusion methods are tailored to aligned multi-modal
image pairs. Traditional fusion methods include six categories:
methods based on multi-scale transformation [21], [22], sparse
representation [23], [24], subspace [24], [25], saliency [26], [27],
hybrid methods [28], [29], and others [30], [31]. These methods
are devoted to designing decomposition ways and fusion rules
for the decomposed components in a manual way. However,
the detailed and diverse manual designs make these methods
complex, time-consuming, and laborious. Moreover, the manu-
ally designed approach usually forces the same decomposition
ways for multi-modal images while ignoring the modal vari-
ances. Thus, traditional methods usually show limited fusion
performances.

To solve drawbacks of traditional methods, some learning-
based methods have been proposed. According to the network
architecture, these methods can be divided into methods based
on auto-encoder [32], [33], [34], convolutional neural networks
(CNN) [35], [36], [37], and generative adversarial networks
(GANs) [38], [39], [40], [41]. Some methods only preserve tex-
tures according to the modality (i.e., preserve textures of a spe-
cific modality while ignoring textures in the other source image).
It results in the distortion of scene information. The GAN-based
methods usually suffer from fake and blurred details. Moreover,
these methods are limited to retaining the information in source
images. Some methods attempt to provide more textures in the
fusion results. [42] tried to fuse details of multi-spectral and
panchromatic images into fused images. However, the upper
limit of preserving these textures is still the original source
information which has not been further improved. [43] can
sharpen boundaries between different image objects while the
improved information is of particular types, e.g., boundaries.

In this work, we focus on texture preservation and enhance
the original textures with poor visibility. In terms of the network
architecture, we introduce the gradient channel attention block
to adaptively adjust the channel-wise contributions of features.
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Fig. 3. Overall framework of the proposed MURF for unified multi-modal image registration and fusion (in the encoders, light to dark colors and bottom-up
arrows: layers from shallow to deep).

In terms of the loss function, we design a texture loss to preserve
the sharper textures in two source images and define a gradient
enhancement function. Through these ways, the fused image can
present more information and better visual effect.

III. METHODOLOGY

The proposed method is capable of processing multi-modal
signals with offsets. It can correct the original parallaxes and
generate a fused image. This section introduces the overall
framework consisting of three main modules. Each module is
described in detail, including the internal pipeline, loss function,
network architecture, and other settings.

A. Problem Formulation

We develop a network for unified multi-modal image registra-
tion and fusion, termed as MURF. With unaligned multi-modal
source images denoted as Ix and Iy , we aim to register Ix with
the reference image Iy and generate the fused image If . To this
end, the overall procedure is depicted in Fig. 3, which is divided
into three main stages.

First, a shared information extraction module (SIEM) cap-
tures the information shared across multiple modalities. It helps
transform the multi-modal registration challenge into mono-
modal registration in the common space. The extraction func-
tions are then used in the registration module.

Second, a multi-scale coarse registration module (MCRM)
performs the global correction. The registration constraints are
established using the representations extracted by SIEM and
then utilized to train the networks in MCRM. MCRM outputs
the image after coarse registration (IRx ). Except for some local
parallaxes where an affine model is not applicable, the images
are roughly aligned.

Finally, a fine registration and fusion module (F2M) with IRx
and Iy as input, integrates source information, and corrects local
parallaxes to generate the final fused image If .

B. Shared Information Extraction Module (SIEM)

Each modality has its own unique attributes. For instance,
RGB, NIR, and IR images represent information in different

wavelength bands. CT and MRI images characterize dense struc-
tures and soft-tissue information, respectively [35]. However,
some significant properties tend to be shared across modalities,
e.g., objects, and geometry. The modal-independent information
is useful for registration, so our goal is to map multi-modal
images into some modal-independent shared space. Thus, we
employ contrastive learning, where images of the same scene
correspond to close representations while those of different
scenes correspond to far apart representations, as shown in Fig. 3.

The multi-modal dataset consists of aligned/roughly aligned
image pairs {Iix, Iiy}Ki=1 where K is the number of image pairs.
Ix and Iy are images belonging to different modalities X and
Y , respectively. Their size can be represented as H×W×C
where H and W are height and width. C=1 for gray image
or C=3 for RGB images. We aim to learn two functions,
f clθ1(·) and f clθ2(·), which map images in domains X and Y
to the shared latent space, with parameters θ1 and θ2 to be
optimized, respectively. The extracted latent representations are
zix=f

cl
θ1
(Iix), z

i
y=f

cl
θ2
(Iiy). {Iix, Iiy} are images of the same

scene. Thus, {zix, ziy} are positive pairs and should be pulled in

the latent space. {Iix, Ij(j �=i)
y } or {Iix, Ij(j �=i)

x } are multi-modal
or mono-modal images of distinct scenes. Their latent represen-
tations are negative pairs and should be pushed apart.

Loss Function. Learning with complete samples imposes a
tremendous strain on storage and optimization. We randomly
sample a few data {Imx , Imy }m∈M at a time. M is a subset of
{1, 2, . . . ,K} containingM indexes. Then, we tune θ1, θ2 with
the sampled set. With a discriminating function s〈·〉 ranking high
values for positive pairs while low values for negative ones, the
contrastive loss function for learning f clθ1(·) and f clθ2(·) is defined
as the InfoNCE loss [44]:

LX
c =−

∑
m∈M

log
exp(s〈zmx , zmy 〉 · 1

τ )∑
n∈M
n�=m

exp(s〈zmx , zny 〉· 1τ )+exp(s〈zmx , znx 〉· 1τ )
,

(1)
where τ is a temperature coefficient to adjust the dynamic
range. f clθ1(I

m
x ) is an anchor representation extracted from an

image in domain X . Similarly, we can anchor at domain Y
and symmetrically construct the Y-related contrastive loss, LY

c .

Authorized licensed use limited to: Wuhan University. Downloaded on December 22,2023 at 10:47:52 UTC from IEEE Xplore.  Restrictions apply. 



12152 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 10, OCTOBER 2023

Fig. 4. Network architecture of encoders to realize fcl
θ1

and fcl
θ2

in the shared information extraction module (SIEM). The kernel size and stride of the convolutional
layers are 3 × 3 and 1.

Fig. 5. Framework of the multi-scale coarse registration module (MCRM).

Thus, the contrastive loss function can be refined as:

Lcontrast = LX
c + LY

c . (2)

To make the extracted representations serve for registration,
they should possess several characteristics: i) have the same
spatial resolution as the input images; ii) provide fine structure
details to ensure registration accuracy; and iii) be in a single
channel to drop modal-dependent attributes. Thus, zx and zy
are both of size H×W . Considering these factors and inspired
by [45], we refine the fineness of latent representations by rota-
tional equivalence. Specifically, the implementation of f clθ (·) is
replaced byT−1f clθ (T (·)).T (·) denotes the image-level rotation
and T−1(·) represents the corresponding reverse rotation in the
latent space. Moreover, considering the spatial resolution of
representations, the discriminating function s〈·〉 quantifies the
score of a pair of representation {z1, z2} with l2 distance:

s〈z1, z2〉 = −‖z1 − z2‖22. (3)

Network Architecture. We realize the function f clθ1(·) and
f clθ2(·) through two pseudo-siamese encoders. The network ar-
chitecture of these encoders is shown in Fig. 4. The input is
a source image and the output is the extracted shared latent
information. It consists of ten layers and instance normalization
rather than batch normalization is used as it performs a kind of
style normalization [46].

C. Multi-Scale Coarse Registration Module (MCRM)

As shown in Fig. 5, MCRM takes Ix and Iy as input and gen-
erates multi-scale affine parameters for spatial transformation.
In the training phase, the pre-trained f clθ1(·) and f clθ2(·) extract
the shared information zx and zy . Then, MCRM is optimized

Fig. 6. Internal pipeline of MCRM to generate multi-scale affine parameters
{p↓4, p↓2, p1}). The implementation of spatial transform based on an image X
and affine parameters p, i.e., ST(X,p), is shown in the yellow region.

by improving the registration accuracy between the deformed
zx through affine transform and zy . In this phase, parameters
in SIEM are fixed. In the testing phase, only MCRM is used to
perform coarse registration.

Specific to MCRM, it is expected to correct long-distance
global parallaxes. In single-scale networks, large kernel sizes
and deep layers are necessary for wide receptive fields to capture
long-distance parallaxes. To alleviate this problem, we apply a
multi-scale progressive registration strategy to reduce parameter
numbers and speed up convergence.

As shown in Fig. 6, the original Ix and Iy are down-sampled
into lower scales, i.e., 1/2 and 1/4. After down-sampling, the
long-distance parallax is more easily captured by small receptive
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fields. We first use AffineNet to learn the affine parameters at the
1/4 scale, denoted as p↓4 ∈ R2×3. Then, we perform the rough
spatial transform on I↓2x at the 1/2 scale with p↓4, represented
as ST(I↓2x , p↓2). In this case, the original parallax between I↓2x
and I↓2y is roughly reduced. On this basis, AffineNet is further
applied to learn the finer affine parameters at the 1/2 scale, i.e.,
p↓2. On the whole, the affine parameters for {Ix, Iy} learned
at 1/2 and 1/4 scales are represented as p↓2p↓4 . Similarly, the
registration process is performed at the original scale to generate
the finest parameters p1 and obtain the final output after coarse
registration, i.e., IRx = ST(Ix, p1p↓2p↓4).

Specific to the implementation of spatial transform, the de-
tails are provided in Fig. 6. Given an image X and the affine
parameter p, we apply p on a regular sampling grid to generate a
deformation fieldφ of sizeH×W×2. It represents the deforma-
tion of pixels in X . The two channels of φ represent deviations
in vertical and horizontal directions, respectively. Finally, the
deformed X is resampled as:

ST(X, p)[i+ φi,j,1, j + φi,j,2] = X[i, j], (4)

where i, j denote the position of the pixel.
Loss Function. The loss function of MCRM is designed

as in Fig. 5. It depends on the multi-scale affine parameters
{p↓4, p↓2, p1} generated in Fig. 6 and the extracted shared infor-
mation {zx, zy}. The problem of multi-modal image registration
is transformed into mono-modal registration between the de-
formed zx and zy . The affine parameters provide the deformation
applied to zx.

Therefore, we define a loss function that measures the reg-
istration accuracy of the deformed zx and zy to optimize the
parameters of AffineNet in Fig. 6. For ease of computational
tractability and for weaker sensibility to linear changes in inten-
sity amplitudes, we use normalized cross-correlation (NCC) to
measure the accuracy. The larger the NCC, the more correlated
and aligned X is to Y . Thus, the loss function of MCRM is
defined as:

Lcoarse=−
∑

p∈{p↓4,p↓2,p1}
NCC(ST(zx, p), zy). (5)

Before computing NCC, the deformed zx and zy are normalized
through the following formulation:

z∗x = clip

(
zx − zmin

zmax − zmin

)
, z∗y = clip

(
zy − zmin

zmax − zmin

)
, (6)

where zmin is the minimum of min(zx) and min(zy). zmax is the
maximum of max(zx) and max(zy). clip(·) represents clipping
to [0, 1]. Then, NCC is defined as:

NCC(X,Y ) =

W∑
i=1

H∑
j=1

(Xi,j − X̄)(Yi,j − Ȳ )√
W∑
i=1

H∑
j=1

(Xi,j − X̄)2

√
W∑
i=1

H∑
j=1

(Yi,j − Ȳ )2

,

(7)
where X,Y are two images. X̄, Ȳ denote their mean values.

Network Architecture. MCRM employs three AffineNets to
generate the affine parameters. The AffineNets are pseudo-
siamese networks and shown in Fig. 7. Deformable convolution

Fig. 7. Network architecture of AffineNet. “Conv(c, k)”: the channel of output
features is c and the kernel size is k × k; “GAP”: global average pooling; “FC”:
fully connected layer; “DeforConv”: deformable convolution layer. The stride
of convolution layers is 1.

layers are applied as they can augment the traditional regular
receptive fields with horizontal and vertical offsets, which are
learned from additional convolution layers. The deformable
convolution layers refer to deformations in unaligned images
for higher registration accuracy and stronger robustness. We
apply many layers, large kernel sizes, and max pooling layers to
capture deformations. Then, the feature maps are mapped into a
128-dimensional vector with the global average pooling (GAP)
layer. In the training phase, we apply dropout to further improve
the performance. Finally, a 128-dimensional vector is fed into
a fully connected layer to generate a 6-dimensional parameter
and reshaped into size 2× 3 as the output affine parameters.

D. Fine Registration and Fusion Module (F2M)

F2M realizes image fusion and corrects the local non-rigid
parallaxes to generate the final aligned and fused image. The
framework of F2M is shown in Fig. 8. In terms of the generation
process, IRx and Iy are first fed into the deformation block and
spatial transform to correct local parallaxes. The output of the
spatial transform is the deformed IRx , denoted as IFx . Then,
IFx and Iy are fused through the subsequent extraction layers,
gradient channel attention block, and reconstruction layers for
image fusion.

The training process is split into two phases. As the fused
image should provide feedback for the fine registration, F2M
realizes image fusion in the first phase. We optimize the fusion-
related parameters and the deformation block is excluded. The
deformation block depends on initialized parameters to generate
the deformation field, which automatically tends to be identical.
Then, If nearly combines the scene information of IRx and Iy,
and renders their parallaxes in a single image. In the second
phase, F2M realizes the fine registration based on If and the
inverse deformation field. The fusion-related parameters which
have been optimized are fixed and the deformation block is
optimized.

1) Image Fusion: Image fusion is realized in fusion-related
layers besides the deformation block and spatial transform. As
the fused image is expected to present a large amount of informa-
tion about scenes, we design the fusion-related part in terms of
loss function and network architecture to present clear and rich
textures in the fused image. For color images such as RGB and
PET images, we transform them into YCbCr space and fuse the
luminance information (Y channel) with the other source image.
Then, the fused image is concatenated with chrominance (Cb and
Cr channels) and transformed into RGB space to generate the
final fused RGB image.
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Fig. 8. Framework of the fine registration and fusion module (F2M).

Loss Function. As the fused image should retain the infor-
mation from source images, we define a similarity loss Lsim

to constrain the similarity between the fused image and source
images. Besides, some textures may suffer from poor visibility
due to low illumination, improper correction, or other factors. If
they are enhanced in the fused image, it will further improve the
visual effect. Thus, we define a texture loss Ltexture to preserve
the salient textures and enhance the textures with poor visibility.
With a hyper-parameter δ controlling the trade-off, the fusion
loss is defined as:

Lfuse = Lsim + δLtexture. (8)

Lsim constrains the structural similarity according to light,
contrast, and structure as defined by the structural similarity
index measure (SSIM) [47]. It is denoted as:

Lsim = 1− 1

2
SSIM(If , I

F
x )− 1

2
SSIM(If , Iy). (9)

For texture preservation and enhancement, we first generate
a binary gradient mask by comparing the absolute gradients of
the same location in IFx and Iy, defined as:

M [i, j] =

{
1,

∣∣∣∇IFx [i, j]
∣∣∣ > ∣∣∣∇Iy[i, j]∣∣∣,

0, else.
(10)

This mask is used in the texture loss to preserve the larger
gradients. Thus, the texture loss is defined as:

Ltexture

=
1

HW

W∑
i=1

H∑
j=1

M [i, j]

·
(
∇If [i, j]− ∇IFx [i, j]

|∇IFx [i, j]|
∣∣∣∇IFx [i, j]

∣∣∣γ)

+(1−M [i, j]) ·
(
∇If [i, j]− ∇Iy[i, j]

|∇Iy[i, j]|
∣∣∣∇Iy[i, j]∣∣∣γ

)
,

(11)

where I[i,j]
|I[i,j]| is used to keep the sign of gradient. Similar to

the gamma correction, we use the power function to enhance
gradients. γ is set to 0.7 in this work.

Network Architecture. As shown in Fig. 8, the network archi-
tecture for image fusion consists of extraction layers, gradient
channel attention block for texture preservation, and reconstruc-
tion layers. We aggregate the absolute gradients as they are a

Fig. 9. Generation and implementation of a non-rigid deformation field.
According to the solved inverse deformation field, we can inverse the deformed
image back. The mean absolute error between the first and last images is 2.141
(mainly caused by areas that cannot be recovered around).

better representation of information richness in feature maps.
The information is aggregated by jointly using max-pooling and
average-pooling. Then, the two-branch results are added and fed
into two individual multi-layer perceptrons to generate shared
channel-wise attention weights. Then, the reconstruction layers
map the additive features back to the image domain to generate
If .

2) Fine Registration: The deformation block takes IRx and
Iy as input and generates the deformation field to correct local
parallaxes through spatial transformation. To train the block, we
artificially create a locally smooth non-rigid deformation field
φnr, as shown in Fig. 9. φnr is applied to an aligned/roughly
aligned image in the domain X to create a deformed image.
The optimization of the block relies on two aspects. First,
the artificially set deformation field theoretically corresponds
to an inverse deformation φinv. It can inversely transform the
deformed image into the original appearance and can be used for
supervision. However, the image pairs in some publicly available
datasets are not strictly aligned and still suffer from some small
parallaxes. Thus, the inversion deformations are not completely
accurate. Second, we also rely on the characteristics of the fused
image for correction. It is easy to observe that any misalignments
in If will decrease the gradient sparsity. We encourage the
sparsity of ∇If and penalize the salient gradients that should
be corrected.

Loss Function. The loss function of the deformation block
consists of two terms. The generated deformation should be
roughly similar to φinv, and the gradient sparsity of If should be
encouraged. The loss function is defined as:

Lfine = ‖D(IRx , Iy; θfine)− φinv‖2 + η
W∑
i=1

H∑
j=1

ψ0(If [i, j]),

(12)
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Fig. 10. Illustration of generating the inverse deformation.

where D(·) denotes the deformation generated by the defor-
mation block. θfine denotes the parameters in this block. η is
a hyper-parameter. Inspired by [48], we define a sparse loss
function ψ0(·) to effectively approximate L0 sparsity:

ψ0(If [i, j]) =

{
1
ε2

∣∣∣∇If [i, j]∣∣∣2, ∣∣∣∇If [i, j]∣∣∣ < ε,

1, else.
(13)

When
∣∣∣∇If [i, j]∣∣∣ < ε, ψ(·) is continuous, a necessary condition

to form a loss function. Finally,D(IRx , Iy; θfine) is applied on IRx
to generate the fine-registered image IFx .

Network Architecture. The network architecture of the defor-
mation block is shown in Fig. 8. It adopts the form of U-Net. Max
pooling and deep layers are used to expand receptive fields to
capture corresponding pixels after deformation. Residual blocks
are also applied to compare and learn the offsets. The final output
of this block is a deformation field of size H ×W × 2 with the
two channels representing their horizontal and vertical offsets
respectively.

Generation of Inverse Deformation. We discuss the genera-
tion of the inverse deformation field. For a deformation field
φnr, the existing methods may intuitively and directly set the
inverse deformation field as −φnr. However, as the deformed
coordinate systems has been warped and distorted compared
with the original coordinate system, −φnr is not the correct
solution. In this part, we analyze the relationship between the
original and deformed coordinate systems and aim to solve for
a more accurate solution for the inverse deformation field.

In the original coordinate system, each pixel corresponds to
its horizontal and vertical offsets, as shown in the first image in
Fig. 10. After deformation, its position is:

i′ = i+ φnr
i,j,1, j ′ = j + φnr

i,j,2, (14)

where {i, j} indicates the original coordinates of a pixel with
i∈{1, . . . ,W}, j∈{1, . . . , H}. {i′, j ′} represents the deformed
position. In the deformed image, if {−φnr

i,j,1,−φnr
i,j,2} are ap-

plied to {i′, j ′}, this pixel can be transformed into its original
position, as shown in the second image in Fig. 10. The inverse
deformation field φinv can be ideally set as:

φinv
i′,j′,1 = −φnr

i,j,1, φinv
i′,j′,2 = −φnr

i,j,2. (15)

However, the deformed coordinate system is different from the
original one as the pixels are randomly scattered. The pixel in
the deformed coordinate system may not correspond to the pixel
in the same position in the original coordinate system as they

are decimals. In this case, for a pixel {u, v} in the deformed
coordinate system, we look for the closest deformed point and
rely on its offset to set the inverse offset. For example, in the
third image of Fig. 10, for the blue pixel (diamond) in the
deformed coordinate system, the closest deformed point is the
green one (circle). The offset of the blue pixel is set as the
inverse offset of the green point. Mathematically, for a pixel
{u, v} in the deformed coordinate system, the closest deformed
point {i′∗, j ′∗} is:

(i′∗, j ′∗) = argmin
{i′,j′}∈Ru,v

√
(u− i′)2 + (v − j ′)2, (16)

where Ru,v denotes the neighborhood near {u, v} to narrow the
solution space and improve efficiency. As {i′∗, j ′∗} is deformed
from {i∗, j∗} in the original coordinate system, the inverse
deformation field φinv can be solved as:

φinv
u,v,1 = −φnr

i∗,j∗,1, φinv
u,v,2 = −φnr

i∗,j∗,2. (17)

Fig. 10 provides the generated inverse deformation field and
the inversely deformed image obtained as:

I inv[u+ φinv
u,v,1, v + φinv

u,v,2] = I ′[u, v], (18)

where I ′ is the deformed image transformed from the original
image I . The slight differences between I inv and I (reported in
the caption of Fig. 9) proves its correctness.

IV. EXPERIMENTS AND RESULTS

We compare MURF with both state-of-the-art (SOTA) multi-
modal image registration and fusion methods. Experiments are
implemented on four types of multi-modal data (four tasks) to
verify generalization. At the end of subsections of registration
and fusion, the ablation study is performed to verify effective-
ness of some designs and settings.

A. Implementation Details

Multi-Modal Images. We test the proposed method on a
variety of multi-modal data, including i) RGB and infrared
(RGB-IR) images; ii) RGB and near-infrared (RGB-NIR) im-
ages; iii) positron emission tomography and magnetic resonance
imaging (PET-MRI) images; and iv) computed tomography and
MRI (CT-MRI) images. The data comes from publicly accessi-
ble datasets, including RoadScene1 (RGB-IR images), VIS-NIR
Scene2 (RGB-NIR images), and Harvard3 (PET-MRI and CT-
MRI images). As images in these datasets are aligned/roughly
aligned, we manually build deformations to obtain unaligned
images for training and testing. The deformations are applied to
RGB, PET, and CT images (three specific types of Ix described
in Section III-A). The reference images Iy are IR, NIR, and MRI
images, respectively.

Training Details. We select images from the above datasets
and apply deformations. Then, the unaligned images are cropped
into patches as the training data. For each task of each module,

1https://github.com/hanna-xu/RoadScene
2http://matthewalunbrown.com/nirscene/nirscene.html
3http://www.med.harvard.edu/AANLIB/home.html
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TABLE I
TRAINING DETAILS OF MODULES ON FOUR TASKS. THE LEARNING RATE IS

SET IN TWO WAYS: FOR SIEM AND MCRM, IT IS INITIALLY SET TO 0.0002
WHICH DECAYS EXPONENTIALLY; FOR F2M, IT IS SET TO A FIXED VALUE OF

0.0001. IN F2M, THE TRAINING SETTINGS OF THE DEFORMATION BLOCK AND

FUSION LAYERS ARE THE SAME

Algorithm 1: Overall Description of MURF.
1: Training phase:
2: Update the parameters θ1, θ2 in SIEM by minimizing

Lcontrast defined in (2) to learn f clθ1(·), f clθ2(·);
3: Fix θ1, θ2, and use f clθ1(·), f clθ2(·) to update parameters

in MCRM by minimizing Lcoarse in (5);
4: Fix the parameters in MCRM;
5: Fix θfine and update the fusion-related parameters in

F2M by minimizing Lfuse defined in (8);
6: Update parameters in the deformation block of F2M,

i.e., θfine, by minimizing Lfine defined in (12);
7: Testing phase:
8: Feed the unaligned multi-modal source images

{Ix, Iy} into MURF, and use SIEM, MCRM, and F2M
to generate the aligned fusion result If .

the settings of patch size, batch size, epoch, learning rate, etc., are
provided in Table I and the process of training the three modules
is summarized as Algorithm 1. All the tasks use the Adam opti-
mizer. The registration-related modules/blocks are first trained
on small patches and then fine-tuned on large-resolution images.
The hyper-parameters are set as: τ = 1, δ = 10, η = 0.001, ε =
0.1. Experiments are performed on NVIDIA Geforce GTX Titan
X GPU and 2.4 GHz Intel Core i5-1135G7 CPU.

B. Shared Information Extraction

We compare shared information extraction module (SIEM)
with some existing methods, including WLD [10], NTG [49],
and SCB [12]. The shared information zx, zy extracted from
Ix, Iy by different methods are shown in Fig. 11. The effec-
tiveness and generalization are validated on four tasks. There
are significant intensity and structure differences in multi-modal
images. Among the results, our results are the most consistent
in visual effect. To compare differences clearly, we scan the
pixel intensities of a column (RGB images are first transformed

TABLE II
COMPARISON OF NORMALIZED CROSS-CORRELATION (NCC) BEFORE AND

AFTER SHARED INFORMATION EXTRACTION WITH DIFFERENT METHODS

(MEAN AND STANDARD DEVIATION ARE SHOWN, BOLD: OPTIMAL,
UNDERLINE: SUBOPTIMAL)

into gray images). The scanned results objectively prove that
our SIEM can effectively decreases modal disparities of images
and capture their shared information. Notably, when processing
multi-modal medical images with larger modal variances, the
comparison methods almost cease to be effective as the extracted
information shows conspicuous differences. It further validates
the effectiveness and generalization of our method.

For quantitative comparison, we use NCC to quantify the
correlations between Ix, Iy and zx, zy , respectively. In each task,
quantitative results are tested on 180 aligned/roughly aligned
pairs. Similarly, RGB images are transformed to gray images
when calculating. Quantitative results before and after extraction
are reported in Table II. Horizontally, RGB-IR shows a substan-
tially lower correlation than other multi-modal data, indicating
the most significant modal variance. The PET, CT, and MRI
images also look modally different while the background (dark)
regions pull up the correlation. Vertically, SIEM improves the
correlation substantially, especially for RGB-IR. Compared with
other methods, our results also show significant improvements.
It can be indicated that zx and zy extracted by our SIEM are in a
common space. Thus, we can use the learned f clθ1(·) and f clθ2(·)
to guide the training of the unsupervised multi-scale coarse
registration module.

C. Multi-Modal Image Registration

1) Qualitative Results: We compare our multi-scale coarse
registration module (MCRM) with some SOTA registration
methods, including SIFT [50], DASC [51], [52], NTG [49],
SCB [12], and MIDIR [53]. Among these methods, SIFT, NTG,
and SCB are only capable of dealing with rigid deformations
as they estimate the affine parameters. DASC and MIDIR can
deal with non-rigid deformation as they estimate flow fields.
Qualitative registration results on four tasks are shown in Fig. 12.
In each group, the deformed image and the reference source im-
age are superimposed to exhibit misalignments. Their gradients
are also superimposed for auxiliary comparison. Especially, it
is difficult to subjectively distinguish whether the structures in
medical images are corresponding. Thus, we mark five pairs of
identically positioned points on the original aligned PET-MRI
and CT-MRI image pairs. Then, the unregistered images are
artificially created. The registration accuracy of medical images
can be observed through the distances between marked points.
The overlapped points indicate the correct deformation.
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Fig. 11. Qualitative comparison of extracted shared information zx, zy from multi-modal images Ix, Iy . The normalized cross-correlation (NCC) between paired
data is reported where paired data is spliced (larger value: higher correlation).

Fig. 12. Qualitative registration results on multi-modal image pairs. In each group, the first column: superimposed images (original misalignment: source images;
other rows: deformed image and the reference source image); the second column: their superimposed gradients. The marked points in PET images are green square
points and those in CT/MRI images are black/white square points. In superimposed images, the two points that should be in the same position are circled. RMSE,
MAE, and MEE (introduced in Section IV-C2) measure the accuracy (smaller value: higher accuracy).

As shown in Fig. 12, SIFT fails to align RGB-IR, PET-MRI,
and CT-MRI images and even aggravates the deformation. The
same phenomenon occurs when NTG aligns RGB-NIR and
PET-MRI images. However, SIFT can successfully deal with
some RGB-NIR scenarios, such as the last group in Fig. 12(b).
It corrects most deformations efficiently except for some slight
offsets at the rightmost railing. Similarly, NTG can alleviate
some offsets in RGB-IR and CT-MRI images, such as the first
group in Fig. 12(a) and some regions in Fig. 12(d). These
methods are applicable to specific types of data but suffer poor
generalization. By comparison, DASC universally suffers severe
geometric distortion in all image pairs, which is easily observed

in Fig. 12(c) and (d) and the last group in Fig. 12(b). SCB and
MIDIR exhibit the tendency to narrow the original offsets, while
their registration accuracy is still inferior to our MCRM.

These results demonstrate that our MCRM outperforms the
SOTA methods with higher registration accuracy and better
generalization for multiple tasks including RGB-IR, RGB-NIR,
PET-MRI, and CT-MRI image registration.

2) Quantitative Results: As illustrated in Fig. 13, five pairs
of point landmarks are artificially labelled in each image pair
and scattered throughout the image. The source points in Ix are
{(wk

s , h
k
s)}5k=1 and the target ones in Iy are {(wk

t , h
k
t )}5k=1.

In the deformed image, the source points are transformed
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TABLE III
QUANTITATIVE REGISTRATION PERFORMANCE COMPARISON RESULTS OF THE MULTI-SCALE COARSE REGISTRATION MODULE (MCRM) IN THE PROPOSED MURF

AND FIVE COMPETITORS (BOLD: OPTIMAL, UNDERLINE: SUBOPTIMAL)

Fig. 13. Illustration of point landmarks. Points represented as “o” in Ix are
the source points {(wk

s , h
k
s )}5k=1 and those represented as “+” in Iy are the

target points {(wk
t , h

k
t )}5k=1.

into {(wk
r , h

k
r )}5k=1, which are expected to approach the target

points. The registration accuracy is evaluated with the euclidean
distances between {(wk

r , h
k
r )}5k=1 and {(wk

t , h
k
t )}5k=1. We com-

pare the distances through root mean square error (RMSE), max
square error (MAE), and median square error (MEE).

The quantitative results are tested on 50 RGB-IR, 155 RGB-
NIR, 100 PET-MRI, and 100 CT-MRI image pairs respectively.
As reported in Table III, our multi-scale coarse registration mod-
ule (MCRM) achieves the optimal performances on three metrics
for four tasks. The smallest standard deviation of our MCRM in
each task also demonstrates its universality and stability. Some
competitors show small mean but large standard deviation. It
demonstrates that they perform well in some scenarios while
not in others.

In terms of specific tasks, NTG achieves the suboptimal
performances on RGB-IR and CT-MRI image registration and
MIDIR achieves the suboptimal performance on PET-MRI im-
age pairs. SIFT shows the suboptimal registration performance
on RGB-NIR image pairs while showing poor performances
on other tasks. The reason is that the performance of SIFT
descriptor is still limited against modal variance. Table II reports
that RGB-NIR images have the highest correlation (background
in medical images pull up their correlation), so SIFT can register
RGB-NIR images well, but fails on other multi-modal images
with low correlation. Therefore, we further compare the gener-
alization of different methods. The quantitative results of each

Fig. 14. Quantitative results of each registration method on the four tasks are
concentrated in each subfigure to verify the generalization (results are displayed
on a log scale).

method on the four tasks are concentrated in each subfigure in
Fig. 14. In line with the above analysis, SIFT outperforms other
competitors on RGN-NIR but fails on other tasks, indicating
poor generalization. As for other methods, their performances
on RGB-NIR images are generally inferior to the performances
on other image pairs. The reason is that the spatial resolution of
RGB and NIR images is significantly higher than those of other
types of images, resulting in relatively high euclidean distances
between point sets. In Fig. 14(c), the inapplicability of NTG
to RGB-NIR images further exacerbates its performance differ-
ences across tasks. Overall, our method shows generally optimal
performance on the four tasks, rather than only applicable to
specific data.

3) Ablation Study: We validate the effectiveness of several
elements in the multi-scale coarse registration module (MCRM),
including the shared information extraction module (SIEM) to
mitigate the multi-modal challenge, the multi-scale progressive
strategy, and the registration loss function. The ablation study
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Fig. 15. Ablation results during the training process where the registration
performances are evaluated by the normalized cross correlation both in the level
of multi-modal image and extracted information in the common space. Smaller
values indicate better registration performance.

Fig. 16. Pipeline of single-scale coarse registration module.

is performed on the representative RGB-IR image registration
because RGB-IR images suffer from the lowest correlation
in all multi-modal combinations as described in Table II. As
distinct experimental settings will result in different loss func-
tions, we evaluate the registration accuracy under different
settings in a unified manner. We evaluate the accuracy from
two aspects, including the accuracy of multi-modal images,
i.e., −NCC(IRx , Iy), and the accuracy of the extracted common
information, i.e., −NCC(zRx , zy).

SIEM to Mitigate Multi-Modal Challenge. To evaluate the
effectiveness of zx=f clθ1(Ix), zy=f

cl
θ2
(Iy) for multi-modal im-

age registration, we replace the registration loss function in
(5). Alternatively, we replace the registration loss with the
multi-modal images Ix, Iy/results of SCB transform [12]. These
approaches both encounter the gradient explosion when training,
indicating that they are difficult for network optimization. The
shared information extracted by SIEM is applicable for opti-
mization, proving the effectiveness of SIEM in mitigating modal
variances.

From the other point of view, the slight differences of NCC,
L1, and L2 losses on registration performance in Fig. 15 also
demonstrate the effectiveness of SIEM. In (5), the registration
loss is based on zx and zy , which are expected to be in a common
space. NCC shows weak sensibility to intensity differences
while L1 and L2 losses do not. If zx and zy show significant
modal variance, it will be difficult to use L1/L2 loss to optimize.
However, in Fig. 15, the applications of NCC, L1, and L2 losses
show slight differences. It demonstrates that the common space
learned by SIEM mitigates original modal variances.

Multi-Scale Progressive Strategy. To validate the effective-
ness of multi-scale strategy, we change it with the single-scale
strategy in Fig. 16. Also, we redefine the registration loss in (5)

in a single-scale form, represented as:

Lcoarse = −NCC(ST(zx, p1), zy). (19)

Under the single-scale strategy, the registration loss in the train-
ing process is also shown in Fig. 15. Although the differences
between multi-scale and single-scale strategies are small in
−NCC(IRx , Iy), they still show significant performance dis-
parities in −NCC(zRx , zy). Comprehensively, the multi-scale
strategy is superior to the single-scale strategy.

Registration Loss Function. In MCRM, for ease of compu-
tational tractability and weaker sensibility to linear intensity
changes, we use NCC to evaluate the registration accuracy. To
validate its effectiveness, we replace NCC in (5) with L1 and L2
losses, respectively. As shown in Fig. 15(a), NCC achieves better
registration performance than L1 and L2 losses in the image
level. In Fig. 15(b), although NCC, L1, and L2 losses finally
fall to the same loss range in the level of extracted information,
the application of NCC loss stills shows the fastest convergence
speed.

D. Multi-Modal Image Fusion

1) Qualitative Results: We compare F2M with some SOTA
fusion methods, including DenseFuse [54], DIF-Net [55], MD-
LatLRR [56], IFCNN [57], RFN-Nest [33], and U2Fusion [6].
We consider the condition where source images contain lo-
cal non-rigid parallaxes. We compare the abilities of different
methods to handle local offsets and fusion performances. The
qualitative results of RGB-IR and RGB-NIR images are shown
in Fig. 17. In Fig. 17(a) and (c), the source images suffer
from obvious non-rigid parallaxes. The parallaxes remain in
the results of competitors, resulting in overlapping shadows,
blurred textures, or confusing scene descriptions. In our result,
the parallaxes are adjusted to provide a clearer scene description.
Moreover, in Fig. 17(b) and (d), the source images are almost
aligned, where we focus on comparing fusion performances.
Among the competitors, IFCNN, MDLatLRR, and U2Fusion
achieve sharper textures. Significant color distortions exist in
DenseFuse and IFCNN. Our results exhibit clear appearance
and little color distortion. Moreover, with the gradient enhance-
ment, our results enhance the original textures rather than just
preserving them.

The qualitative results of medical images are shown in Fig. 18.
Due to the large modal differences between medical modalities,
few textures in PET/CT images, and high freedom degree of
non-rigid transformation, it is hard to generate accurate inverse
deformation fields. As the image pairs in the Harvard dataset
are aligned, we directly compare the fusion performances of
F2M and other fusion methods. F2M shows three advantages.
First, our results are not interfered by useless background in-
formation. In Fig. 18(a) and (c), the background in PET/CT
images provides little information. The introduction of useless
information in competitors leads to the information distortion
of MRI images while our results preserve the information in
MRI images. Second, F2M preserves the source information
in balance. In Fig. 18(b) and (d), the competitors excessively
preserve the functional information in PET images but weaken
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Fig. 17. Qualitative results of fusion methods and our F2M on RGB-IR and RGB-NIR data with non-rigid local parallaxes. MG, EI, and VIF (introduced in
Section IV-D2) evaluate the fusion performance (larger value: better performance).

Fig. 18. Qualitative comparisons of different fusion methods and our F2M on PET-MRI and CT-MRI image pairs.

TABLE IV
QUANTITATIVE COMPARISON OF THE FINE REGISTRATION AND FUSION MODULE (F2M) AND STATE-OF-THE-ART FUSION COMPETITORS

the textures of MRI images. Our results preserve both functional
and structural information and do not suffer from color distortion
such as DenseFuse and IFCNN. Finally, F2M not only preserves
but also enhances textures, as shown in Fig. 18(a) and (c).

2) Quantitative Results: Quantitative comparisons are per-
formed on 50 RGB-IR, 50 RGB-NIR, 20 PET-MRI, and 20
CT-MRI image pairs. Three metrics, including mean gradient
(MG) [58], edge intensity (EI) [59], and visual information
fidelity (VIF) [60] are used for quantitative evaluation. MG
evaluates the mean gradient, reflecting texture details of the

fused image. EI measures the gradient amplitude of the edge
point. A larger EI image represents a higher image quality and
more clearness [61]. VIF is consistent with human visual system
by measuring the information fidelity of the fused image. First,
source images and fused image are filtered and divided into
several blocks, respectively. Then, the visual information with
and without distortion is evaluated and VIF for each subband is
calculated. Finally, the overall VIF is calculated.

As reported in Table IV, F2M achieves the optimal perfor-
mances on MG and EI on all the tasks. It indicates that our results
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Fig. 19. The first row provides qualitative results of F2M and F2M without the texture loss (δ = 0), gradient enhancement function (γ = 1), gradient channel
attention, and feedback of the fused image (η = 0). The second row shows the qualitative results when setting γ in (11) to different values.

contain the most abundant texture details, highest image quality,
and clearest contents. It is consistent with the characteristics
demonstrated by the qualitative results. For VIF, F2M is inferior
to some of the competitors. The reasons lie in two aspects.
First, there are some local non-rigid offsets in the RGB-IR
and RGB-NIR images. F2M corrects the offsets through the
deformation block while the competitors do not. The correction
naturally leads to a reduction in the similarity between the fused
image and the source image before the deformation. It is reflected
as a reduction in VIF. Second, our fusion method not only aims
to retain the information in source images into the fused image
but also enhance the textures to provide higher image quality.
The enhancement operation inevitably leads to the differences
between the information presented in the fusion result and
the original information. These two factors lead our F2M to
perform worse than some of the competitors on VIF, which
measures the similarity between the fused image and source
images.

3) Ablation Study and Hyper-Parameter Analysis: In F2M,
to improve fusion performance, we design the texture lossLtexture

and the gradient enhancement function in (11), and the gradient
channel attention mechanism. Moreover, to improve registration
accuracy, we rely on the characteristic of the fused image for
feedback. This section validates the effectiveness of these set-
tings. Also as the preliminary version (RFNet [7]) is designed
for RGB-NIR data, we take RGB-NIR images to perform the
ablation study. Then, the results can also be compared with
RFNet.

As shown in Fig. 19, when the texture loss is not applied, the
network fuses source images without emphasis and considering
information quality. The fused image shows blur texture details.
By using the texture loss to preserves sharper source textures,
the result exhibits higher image quality, as illustrated in the
fused image w/o gradient enhancement, w/o channel attention,
and F2M. Comprehensively, the result of F2M contains more
textures than other fusion results. It demonstrates that the gra-
dient enhancement function and the channel attention introduce
more scene details into the fused image. For the registration
setting, we ablate the feedback of fusion by setting η in (12)
to 0. Then, F2M only relies on the inverse deformation field
for optimization. The results in Fig. 19 show that the single
application of inverse deformation field results in an unsmooth

deformation field. The constraint based on the gradient sparsity
of the fused image further improves the accuracy.

The quantitative results tested on the same dataset with the
same metrics in Section IV-D2 are reported in Table V. F2M
shows the most details, clearest image quality, and highest
information fidelity by achieving the best performances on MG,
EI, and VIF. By ablating fusion-related settings, we find that the
texture loss significantly improves the quality of fused image.
The gradient enhancement function is of secondary importance.
Lastly, the fusion performance is improved least with the gra-
dient channel attention to revise the network. The results show
that the combination of these settings can achieve the optimal
performance, validating their effectiveness. With the feedback
of fusion, these metrics are further improved with more accurate
alignment.

Furthermore, we analysis the effect of different settings of γ in
(11) on the fusion performance. As shown in Fig. 19,γ = 0.1 and
γ = 0.4 result in over-sharpened textures that distort the visual
effect of fused image. Contrarily, γ > 1 (e.g., γ = 1.4) blurs the
original textures. By comparison, γ = 0.7 is more suitable for
enhancement.

4) Exchanging Reference Images: In previous experiments,
we set images in modality Y as reference images. Contrarily, we
set images in modality X as reference images and apply defor-
mations to images in modalityY . Taking RGB-NIR images as an
example, the results shown in Fig. 22 validate the generalization
of F2M.

E. Combination of Registration and Fusion

We use the combination of different registration and fusion
methods as competitors to evaluate the overall performance
of MURF. As the comparison fusion methods cannot correct
parallaxes, the registration competitors in Section IV-C which
achieve the optimal performances in corresponding tasks are
utilized for pre-processing. The registration method for RGB-IR,
RGB-NIR, PET-MRI, and CT-MRI image pairs are NTG [49],
SIFT [50], MIDIR [53], and NTG, respectively.

We analyze the qualitative results in Fig. 20 from two as-
pects. First, in Fig. 20(a), (c), (e), and (g), the comparison
registration methods fail to completely eliminate the parallaxes.
Some misalignments caused by deficient registration accuracy
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TABLE V
QUANTITATIVE RESULTS OF F2M AND F2M WITHOUT THE TEXTURE LOSS (δ = 0), GRADIENT ENHANCEMENT (γ=1), GRADIENT CHANNEL ATTENTION, AND

FEEDBACK OF FUSION. THE COMPARISON WITH F2M IN THE PRELIMINARY VERSION (RFNET) IS ALSO PROVIDED

Fig. 20. Overall performance comparison of the proposed method and the combination of state-of-the-art registration methods and fusion methods on unaligned
RGB-IR, RGB-NIR, PET-MRI, and CT-MRI image pairs.

Fig. 21. Detection results on RGB-IR images, and different registration and
fusion results.

Fig. 22. Qualitative results when we contrarily set images of modality X
(e.g., RGB) as reference and correct the deformations in images of modality Y
(e.g., NIR).

remain in the results, causing incorrect position correspondence,
overlapping shadows, and blurred results. By comparison, our
coarse-to-fine fashion and multi-scale strategy correct the mis-
alignments and represent correct correspondence and clearer
textures. Second, our fusion results exhibit the most abundant
textures. In Fig. 20(b), (d), (f), and (h), the blurred textures in
one source image affect the clarity of competitors, particularly
evident in PET-MRI and CT-MRI images. Our results preserve
and enhance the sharper textures, which provide a more detailed
portrayal of scenes and are suitable for human visual perception
system.

External Verification of Object Detection. To evaluate the
practical benefits of image fusion and its improved perfor-
mance, external verification of object detection is performed.
As there are no significant detection targets in medical images
and RGB-NIR images are not synchronized (not taken at the
same time), the verification is performed on RGB-IR images
with YOLOv7 [62] as the detector. As shown in Fig. 21, the
detector fails to detect all the thermal targets in source images,
such as the three cars in the first example and the persons in
the second example. However, after fusion, the three cars and
more persons are successfully detected in some fused images.
Besides, the confidence levels of some targets are increased in
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Fig. 23. Diagram showing the differences between the previous version
(RFNet) and the proposed MURF in highlight. Different or improved parts are
highlighted in red.

some results. These phenomenon verify the practical benefit of
image fusion.

Comparing the detection results, MURF shows two advan-
tages. First, more targets are detected in our results, as evi-
denced by the three cars in the first example and especially
multiple persons below the stop sign in the second example.
These targets are not detected in some competitors. Second, with
the improvement of fusion performance, some confidence levels
are increased in our results. In the first example, the confidence
levels of the car and person in our result are higher than the
source images and competitors.

F. MURF versus RFNet

The preliminary of MURF is RFNet [7]. The improvements
are stated in Section I. MURF is applicable to coarse registration
of not only street scenes as RFNet but also nature scenes. The
differences and improvements are summarized as Fig. 23. The
technical improvements are in four aspects.

The first two improvements are for coarse registration: i)
RFNet employs image translation to eliminate modal variances.
The registration loss is defined on the translated image and
the reference one. In MURF, the registration loss is based on
the extracted shared information illustrated in Fig. 11; ii) We re-
vise the single-scale registration to multi-scale progressive regis-
tration. To validate the effectiveness, the qualitative comparison
is performed on a street scene and a nature scene. As shown in
the street scene in Fig. 24(a), RFNet and MURF can both correct
the offsets as their results show minor deviations. However, for
the nature scenes in Fig. 24(b), RFNet shows a distinct disad-
vantage, manifested in lower registration accuracy. The reason is
that different types of scenes show distinct inter-modal structure
differences. Street scenes contain significant structures which do
not vary between modalities. Nature scenes may contain obvious
inter-modal structure differences (e.g., grassland and forest) or
lack salient structures (e.g., water). In image translation, the
target of reducing inter-modal structure differences is basically
achieved by re-styling existing contents. It is almost impossible
to generate contents that do not originally exist. In MURF, we
extract the shared information rather than generating structures
that do not originally exist. Therefore, MURF shows higher
registration accuracy and broader application scenarios. The

Fig. 24. Qualitative coarse registration comparison of RFNet and MURF.
Second column: superimposed source images (second row: superimposed gra-
dients); other columns: superimposed deformed RGB and NIR images.

TABLE VI
REGISTRATION COMPARISON OF RFNET AND MURF

Fig. 25. Qualitative comparison of F2M in RFNet and MURF.

quantitative comparison of 75 unaligned RGB-NIR image pairs
reported in Table VI also shows that MURF achieves better
registration performance.

The other two technical improvements are in F2M: i) RFNet
merely relies on the feedback of fusion to correct offsets while it
may generate incorrect deformation fields. MURF not only relies
on the feedback but also uses the inverse deformation field to
improve the accuracy; ii) MURF not only preserves the source
textures as in RFNet but also enhances the original textures with
poor visibility. To validate these improvements, the qualitative
results on typical RGB-NIR image pairs are shown in Fig. 25. It
demonstrates two advantages of MURF over RFNet. In the first
two examples, MURF achieves higher fine-registration accuracy

Authorized licensed use limited to: Wuhan University. Downloaded on December 22,2023 at 10:47:52 UTC from IEEE Xplore.  Restrictions apply. 



12164 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 10, OCTOBER 2023

TABLE VII
PARAMETER COMPARISON OF DEEP LEARNING-BASED METHODS

Fig. 26. Qualitative results of shared information extracted from the upsam-
pled LRMS and PAN images, respectively.

than RFNet. In the last example, some regions are blurred and
fuzzy in RFNet while they are sharper and more specific in
MURF. Comparing Tables IV and V, RFNet contains more
abundant texture details, higher image quality, and clearer scene
contents than the comparison fusion methods. On this basis,
MURF further improves the mean gradient, edge intensity, and
visual information fidelity of the fused images. It further proves
the superiority of our fusion performance.

G. Complexity Comparison

We perform a complexity comparison of all the comparison
methods, our preliminary version (RFNet), and MURF in terms
of the number of parameters. As reported in Table VII, when
applying space transform to reduce modal variances, SIEM in
MURF uses fewer parameters than TransNet in RFNet. For im-
age registration, MURF uses more parameters than the compar-
ison method, but achieves higher registration accuracy. Besides,
it also shows fewer parameters than the registration network
in RFNet. When purely comparing fusion-related parameters,
MURF shows obvious advantages. Its complexity is only inferior
to DIF-Net and RFNet. Most parameters in F2M exist in the
deformation block, which is also advantageous over that in
RFNet. In general, MURF has less computational complexity
than RFNet.

V. FUTURE IMPROVEMENTS

Extension to Pansharpening. We investigate the possibility
and effectiveness of the proposed method for pansharpening,
i.e., fusing a low-resolution multispectral (LRMS) image and
a high-resolution panchromatic (PAN) image. We evaluate on
QuickBird dataset. First, the results of extracting shared infor-
mation through SIEM are shown in Fig. 26. It indicates that our
SIEM can effectively capture the shared information, which is

Fig. 27. Qualitative results of the registration of the upsampled LRMS and
PAN images through MCRM in MURF.

more consistent than source images. Second, the registration re-
sults shown in Fig. 27 indicate that our MCRM can correct global
rigid deformations in remote sensing images. Third, considering
fusion, MS images contain more channels and not applicable
for conversion to YCbCr space. Pansharpening requires unique
and strict retention of spectral information. It is significantly
different from previous tasks. Thus, F2M cannot yet be applied
to pansharpening and it remains a future improvement.

Dealing With More Input Modalities. We consider the con-
dition when processing N(N > 2) input images of different
modalities through this method. For registration, a reference
image should be selected and the other N − 1 source images
should be individually aligned with this image. For fusion, as
F2M contains the gradient channel attention block, it can only
fuse two images at a time. Thus, other input images should be
fused with the fused image one by one. Therefore, the total
computational cost of processingN input images isN − 1 times
that of processing two images. A future improvement could be
to reduce the computational complexity when dealing with more
inputs.

VI. CONCLUSION

In this article, we propose a novel approach realizing multi-
modal image registration and fusion in a mutually reinforcing
framework, termed as MURF. It breaks through the bottleneck
that existing fusion methods are only applicable to aligned
source images. MURF comprises three modules: shared infor-
mation extraction module (SIEM), multi-scale coarse registra-
tion module (MCRM), and fine registration and fusion module
(F2M). The image registration is handled in a coarse-to-fine
approach. For coarse registration, SIEM first transforms multi-
modal images into mono-modal information to eliminate modal
variances. Based on it, MCRM progressively corrects global
rigid parallaxes through multi-scale affine transformation. The
fine registration and fusion are realized in a single module, which
further improves registration accuracy and fusion performance.
For image fusion, we attempt to integrate texture enhancement
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in addition to source information retention. The registration
and fusion experiments on four multi-modal tasks validate the
effectiveness and universality of the proposed method.
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